Перейти к содержанию

Site-header. container padding-top: 0. site-title background: none; padding-top: 0

Содержание

Самое стабильное вещество. Самые тяжелые металлы в мире

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.

Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.

Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!

Самым сильным стабильным окислителем , является комплекс дифторида криптона и пентафторида сурьмы. Из-за сильного окисляющего действия (окисляет все элементы в высшие степени окисления, в том числе кислород и азот воздуха) для него очень трудно измерить электродный потенциал. Единственный растворитель, который реагирует с ним достаточно медленно — безводный фтористый водород.

Самым плотным веществом , является осмий. Его плотность составляет 22,5 г/см 3 .

Самый легкий металл — это литий. Его плотность составляет 0,543 г/см 3 .

Самый дорогой металл — это калифорний. Его стоимость в настоящее время составляет 6 500 000 долларов за 1 грамм.

Самый распространенный элемент в земной коре — это кислород. Его содержание составляет 49% от массы земной коры.

Самый редкий элемент в земной коре — это астат. Его содержание во всей земной коре, по оценкам специалистов составляет всего 0,16 грамм.

Самым горючим веществом , является, по-видимому, мелкий порошок циркония. Для того чтоб он не мог гореть, необходимо поместить его в атмосферу инертного газа на пластину из материала, не содержащего неметаллов.

Веществом с наименьшей температурой кипения , является гелий. Его температура кипения равна -269 градусов по Цельсию. Гелий — единственное вещество, не имеющее температуры плавления при обычном давлении. Даже при абсолютном нуле он остается жидким. Жидкий гелий широко используется в криогенной технике.

Самый тугоплавкий металл — это вольфрам. Его температура плавления составляет +3420 градусов по Цельсию. Из него изготовляют нити накаливания для электрических лампочек.

Самый тугоплавкий материал — это сплав карбидов гафния и тантала (1:1). Он имеет температуру плавления +4215 С.

Самым легкоплавким металлом , является ртуть. Ее температура плавления равна -38,87 градусов по Цельсию. Она же является самой тяжелой жидкостью , ее плотность составляет 13,54 г/см 3 .

Самую высокую растворимость в воде среди твердых веществ имеет трихлорид сурьмы. Его растворимость при +25 С составляет 9880 грамм на литр.

Самым легким газом , является водород. Масса 1 литра составляет всего 0,08988 грамм.

Самым тяжелым газом при комнатной температуре , является гексафторид вольфрама (т. кип. +17 С). Его масса составляет 12,9 г/л, т.е. в нем могут плавать некоторые виды пенопласта.

Самым стойким к кислотам металлом , является иридий. До сих пор не известно ни одной кислоты или их смеси, в которых он бы растворялся.

Самый широкий диапазон концентрационных пределов взрываемости имеет сероуглерод. Взрываться могут все смеси паров сероуглерода с воздухом содержащие от 1 до 50 объемных процентов сероуглерода.

Самой сильной стабильной кислотой является раствор пентафторида сурьмы во фтористом водороде. В зависимости от концентрации пентафторида сурьмы эта кислота может иметь показатель Гаммета до -40.

Самым необычным анионом в соли является электрон. Он входит в состав электрида 18-краун-6 комплекса натрия.

Рекорды для органических веществ

Самым горьким веществом , является денатония сахаринат. Его получили случайно, во время исследования денатония бензоата. Сочетание последнего с натриевой солью сахарина дало вещество в 5 раз более горькое, чем предыдущий рекордсмен (денатония бензоат). В настоящее время оба этих вещества используются для денатурации спирта и других непищевых продуктов.

Самым сильным ядом , является ботулинический токсин типа А. Его летальная доза для мышей (ЛД50, внутрибрюшинно) составляет 0,000026 мкг/кг веса. Это белок с молекулярной массой 150 000, продуцируемый бактерией Clostridium botulinum.

Самым нетоксичным органическим веществом , является метан. При увеличении его концентрации интоксикация возникает из-за недостатка кислорода, а не в результате отравления.

Самый сильный адсорбент , был получен в 1974 году из производного крахмала, акриламида и акриловой кислоты. Это вещество способно удерживать воду, масса которой в 1300 раз превосходит его собственную.

Самыми зловонными соединениями , являются этилселенол и бутилмеркаптан. Концентрация которую человек может обнаружить по запаху так мала, что до сих пор нет методов позволяющих ее точно определить. По оценкам величина ее составляет 2 нанограмма на кубометр воздуха.

Самым сильным галлюциногенным веществом , является диэтиламид l-лизергиновой кислоты. Доза всего в 100 микрограмм вызывает галлюцинации продолжающиеся около суток.

Самым сладким веществом , является N-(N-циклонониламино(4-цианофенилимино)метил)-2-аминоуксусная кислота. Это вещество в 200 000 раз превосходит по сладости 2% раствор сахарозы, но из-за своей токсичности, применения в качестве подсластителя, по видимому не найдет. Из промышленных веществ самым сладким является талин, который в 3 500 — 6 000 раз слаще сахарозы.

Самым медленным ферментом , является нитрогеназа, катализирующая усвоение клубеньковыми бактериями атмосферного азота. Полный цикл превращения одной молекулы азота в 2 иона аммония занимает полторы секунды.

Самым сильным наркотическим анальгетиком является, по-видимому, вещество, синтезированное в Канаде в 80-х годах. Его эффективная анальгетическая доза для мышей (подкожное введение) составляет всего 3,7 нанограмма на килограмм веса, то есть он в 500 раз сильнее эторфина.

Органическим веществом с самым большим содержанием азота является бис(диазотетразолил)гидразин. Он содержит 87,5% азота. Это взрывчатое вещество черезвычайно чувствительно к удару, трению и теплу.

Веществом с самой большой молекулярной массой является гемоцианин улитки (переносит кислород). Его молекулярная масса составляет 918 000 000 дальтон, что больше молекулярной массы даже ДНК.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Среди диковинок, скрытых в глубинах вселенной, вероятно, навсегда сохранит одно из значительных мест небольшая звёздочка близ Сириуса. Эта звезда состоит из вещества, в 60 000 раз более тяжёлого, нежели вода! Когда мы берём в руки стакан ртути, нас удивляет его грузность: он весит около 3 кг. Но что сказали бы мы о стакане вещества, весящем 12 т и требующем для перевозки железнодорожной платформы? Это кажется абсурдом, а между тем таково одно из открытий новейшей астрономии.

Открытие это имеет длинную и в высшей степени поучительную историю. Уже давно было замечено, что блистательный Сириус совершает своё собственное движение среди звёзд не по прямой линии, как большинство других звёзд, а по странному извилистому пути. Чтобы объяснить эти особенности его движения, известный астроном Бессель предположил, что Сириуса сопровождает спутник, своим притяжением «возмущающий» его движение. Это было в 1844 г. — за два года до того, как был открыт Нептун «на кончике пера». А в 1862 г., уже после смерти Бесселя, догадка его получила полное подтверждение, так как заподозренный спутник Сириуса был усмотрен в телескоп.

Спутник Сириуса — так называемый «Сириус В» — обращается около главной звезды в 49 лет на расстоянии, в 20 раз большем, чем Земля вокруг Солнца (т. е. примерно на расстоянии Урана). Это — слабая звёздочка восьмой-девятой величины, но масса её весьма внушительна, почти 0,8 массы нашего Солнца. На расстоянии Сириуса наше Солнце должно было бы светить звездой 1,8-й величины; поэтому если бы спутник Сириуса вмел поверхность, уменьшенную по сравнению с солнечной в соответствии с отношением масс этих светил, то при той же температуре он должен был бы сиять, как звезда примерно второй величины, а не восьмой-девятой. Столь слабую яркость астрономы первоначально объясняли низкой температурой на поверхности этой звезды; её рассматривали как остывающее солнце, покрывающееся уже твёрдой корой.

Но такое допущение оказалось ошибочным. Удалось установить, что скромный спутник Сириуса — вовсе не угасающая звезда, а напротив, принадлежит к звёздам с высокой поверхностной температурой, гораздо более высокой, чем у нашего Солнца. Это совершенно меняет дело. Слабую яркость приходится, следовательно, приписать только малой величине поверхности этой звезды. Вычислено, что она посылает в 360 раз меньше света, чем Солнце; значит, поверхность её должна быть по крайней мере в 360 раз меньше солнечной, а радиус в j/360, т. е. в 19 раз, меньше солнечного. Отсюда заключаем, что объём спутника Сириуса должен составлять менее чем 6800-ю долю объёма Солнца, между тем как масса его составляет почти 0,8 массы дневного светила. Уже это одно говорит о большой уплотнённости вещества этой звезды. Более точный расчёт даёт для диаметра планеты всего 40 000 км, а следовательно, для плотности — то чудовищное число, которое мы привели в начале раздела: в 60 000 раз больше плотности воды.

«Навострите уши, физики: замышляется вторжение в вашу область», — приходят на память слова Кеплера, сказанные им, правда, по другому поводу. Действительно, ничего подобного не мог представить себе до сих пор ни один физик. В обычных условиях столь значительное уплотнение совершенно немыслимо, так как промежутки между нормальными атомами в твёрдых телах слишком малы, чтобы допустимо было сколько-нибудь заметное сжатие их вещества. Иначе обстоит дело в случае «изувеченных» атомов, утративших те электроны, которые кружились вокруг ядер. Потеря электронов уменьшает поперечник атома в несколько тысяч раз, почти не уменьшая его веса; обнажённое ядро меньше нормального атома примерно во столько раз, во сколько муха меньше крупного здания. Сдвигаемые чудовищным давлением, господствующим в недрах звёздного шара, эти уменьшенные атомы-ядра могут сблизиться в тысячи раз теснее, чем нормальные атомы, и создать вещество той неслыханной плотности, какая обнаружена на спутнике Сириуса.

После сказанного не будет казаться невероятным открытие звезды, средняя плотность вещества которой ещё в 500 раз больше, чем у вещества упомянутой ранее звезды Сириус В. Мы говорим о небольшой звёздочке 13-й величины в созвездии Кассиопеи, открытой в конце 1935 г. Будучи по объёму не больше Марса и в восемь раз меньше земного шара, звезда эта обладает массой, почти втрое превышающей массу нашего Солнца (точнее, в 2,8 раза). В обычных единицах средняя плотность её вещества выражается числом 36 000 000 г/см3. Это означает, что 1 см3 такого вещества весил бы на Земле 36 т. Вещество это, следовательно, плотнее золота почти в 2 миллиона раз.

Немного лет назад учёные, конечно, считали бы немыслимым существование вещества в миллионы раз плотнее платины. Бездны мироздания скрывают, вероятно, ещё немало подобных диковинок природы.

Этот базовый список из десяти элементов является самым «тяжёлым» по плотности на один кубический сантиметр. Однако обратите внимание, что плотность — это не масса, она просто показывает, насколько плотно упакована масса тела.

Теперь, когда мы это понимаем, давайте взглянем на самые тяжёлые во всей известной человечеству вселенной.

10. Тантал (Tantalum)

Плотность на 1 см³ — 16,67 г

Атомный номер тантала — 73. Этот сине-серый металл является очень твёрдым, а также имеет супервысокую температуру плавления.

9. Уран (Uranium)


Плотность на 1 см³ — 19,05 г

Обнаруженный в 1789 году немецким химиком Мартином Генрихом Клапортом (Martin H. Klaprot), металл стал настоящим ураном лишь почти сто лет спустя, в 1841 году, благодаря французскому химику Эжену Мелькиору Пелиго.

8. Вольфрам (Wolframium)


Плотность на 1 см³ — 19,26 г

Вольфрам существует в четырёх различных минералах, а также является самым тяжёлым из всех элементов, играющих важную биологическую роль.

7. Золото (Aurum)


Плотность на 1 см³ — 19,29 г

Говорят, деньги на деревьях не растут, чего не скажешь о золоте! Небольшие следы золота были обнаружены на листьях эвкалиптовых деревьев.

6. Плутоний (Plutonium)


Плотность на 1 см³ — 20,26 г

Плутоний демонстрирует красочное состояние окисления в водном растворе, а также может спонтанно изменять состояние окисления и цвета! Это настоящий хамелеон среди элементов.

5. Нептуний (Neptunium)

Плотность на 1 см³ — 20,47 г

Названный в честь планеты Нептун, он был обнаружен профессором Эдвином Макмилланом (Edwin McMillan) в 1940 году. Он также стал первым обнаруженным синтетическим трансурановым элементом из семейства актиноидов.

4. Рений (Rhenium)

Плотность на 1 см³ — 21,01 г

Название этого химического элемента происходит от латинского слова «Rhenus», что означает «Рейн». Он был обнаружен Вальтером Ноддаком (Walter Noddack) в Германии в 1925 году.

3. Платина (Platinum)

Плотность на 1 см³ — 21,45 г

Один из самых драгоценных металлов в этом списке (наряду с золотом), и используется для изготовления практически всего. В качестве странного факта: вся добытая платина (до последней частицы) могла бы поместиться в гостиной среднего размера! Не так много, на самом деле. (Попробуйте поместить в неё всё золото.)

2. Иридий (Iridium)


Плотность на 1 см³ — 22,56 г

Иридий был обнаружен в Лондоне в 1803 году английским химиком Смитсоном Теннантом (Smithson Tennant) вместе с осмием: элементы присутствовали в природной платине в качестве примесей. Да, иридий был обнаружен чисто случайно.

1. Осмий (Osmium)


Плотность на 1 см³ — 22,59 г

Не существует ничего более тяжёлого (на один кубический сантиметр), чем осмий. Название этого элемента происходит от древнегреческого слова «osme», что означает «запах», поскольку химические реакции его растворения в кислоте или воде сопровождаются неприятным, стойким запахом.

Елена Самоданова: биография, карьера, личная жизнь

Входит в десятку лучших профессиональных исполнителей латино-американских танцев в мире. Эта пара радовала телезрителей весь сезон «Танцев со звездами — 2015 », и неудивительно, что она удостоились.
Елена Самоданова: биография, карьера, личная жизнь

Ртуть самый тяжелый металл. Какой самый тяжелый металл на земле. История открытия металлов

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.

Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.

Вы знали, что изначально в таблице Менделеева содержалась нулевая группа, в которой наравне с инертными газами стоял эфир? Хотя сегодня не об этом.
10 млн долларов – именно в такую сумму оценивается 1 грамм . Второе место по редкости, соответственно, и по цене, занимает осмий.

Кроме того, он еще и самый тяжелый металл в мире, хотя некоторые ученые считают, что эту позицию должен занимать иридий.

Чтобы определить, что тяжелее, надо сравнить атомный вес и посмотреть, что обладает более высокой плотностью. По этим показателям на сегодняшний день самыми тяжелыми считаются осмий и уступающий ему на доли кубических сантиметров иридий. Представьте: кубик осмия с восьмисантиметровыми сторонами весит почти 12 кг!

Предлагаю взглянуть на фото самого тяжелого металла:

Красавцы, не правда?

Топ-10 самых тяжелых металлов в мире

Предлагаю ознакомиться с элементами согласно их рейтингу.

Тантал

Считается редким и не очень тяжелым металлом, он обладает плотностью 16,65 г/см³. Его используют хирурги – он практически не поддается разрушению и ржавчине, легок в обработке.

Плотность урана – 19,07 г/см³. Его основное отличие от собратьев – природная радиоактивность. В процессе трансформации, которые претерпевают атомы урана, вещество превращается в другой излучающий элемент. Цепочка превращений состоит из 14 этапов, один из них – преобразование в радий, последняя стадия – образование свинца. Правда, для полного перехода урана в свинец понадобится не один миллиард лет.

Вольфрам

Вольфрам (19,25 г/см³) в шутку называют идеальным кандидатом для подделки золотых слитков. Это самый тугоплавкий материал, температура плавления приближена к фотосфере Солнца – 3422 °C. Поэтому он лучше всего подходит для спиралей в лампах накаливания.

Золото

Плотность золота – 19,3 г/см³. Мягкое, тягучее, обладающее хорошей тепло- и электрической проводимостью, оно не боится химического воздействия. Золото находится не только на поверхности Земли. В 5 раз больше его содержится в ядре планеты.

Плутоний

Этот элемент – одна из ступеней радиоактивного преобразования урана. В недрах планеты он тоже есть, но в мизерных количествах. Плотность его составляет 19,7 г/см³. Из-за своей радиоактивности плутоний всегда теплый, при этом плохо проводит ток и тепло.

Нептуний

Это еще одно детище урана, полученное в ходе ядерных реакций. Плотность – 20,25 грамм на кубический сантиметр. Нептуний довольно мягкий и ковкий материал, который медленно вступает в реакцию с воздухом и водой.

Рений

Рений – еще один тугоплавкий, ковкий, стойкий к окислению элемент. Температура плавления – 2000 °C. В общей сложности мировые запасы элемента составляют примерно 17 000 тонн. Плотность рения – 21,03 г/см³. Его используют в медицине, ювелирном деле, вакуумной технике, электронных приборах и металлургии.

Платина

Платина – хоть и не самый тяжелый металл, но довольно близок к этому – 21,45 г/см³. Она используется не только ювелирами, но и хирургами, специалистами в области инвестиций, в химической и стекольной промышленности, автомобильном деле, биомедицине и электронике. , а изделия из нее трудно поцарапать. Этот элемент встречается в 30 раз реже золота.

Осмий

Плотность 22,6 г/см³ – самый тяжелый в мире металл, он твердый, но довольно ломкий. Как его ни нагревай, свой блеск и серо-голубоватый оттенок он не потеряет ни при каких условиях. Его трудно обрабатывать, в основном залегает в местах падения метеоритов.

Иридий

Разница между иридием и осмием по плотности – в сотых частях грамма. Иридий тугоплавкий, относится к редким, драгоценным. Не взаимодействует с кислотами, воздухом и водой. Применяется для контроля сварочных швов, а в палеонтологии и геологии используется в качестве индикатора слоя, сформировавшегося после падения метеорита.

Характеристики самого плотного металла

Ученые сошлись во мнении, что, несмотря на практически одинаковую плотность, иридий совсем чуть-чуть уступает самому тяжелому металлу. Однако полностью физико-химические свойства этих двух элементов пока не изучены.

Редкостью и трудозатратностью добычи обусловлена стоимость осмия – в среднем от $15 000 за грамм. Он внесен в группу платиновых и условно считается благородным, однако название металла противоречит статусу: по-гречески «осме» значит «запах». Из-за высокой химической активности осмий пахнет смесью чеснока или редьки с хлором.

Температура плавления самого тяжелого металла – 3033 °C, а кипит он при 5012 °C.

Застывая из расплава, осмий образует красивые кристаллы с интересным сине- или серебристо-голубым отливом. Но, несмотря на красоту, для изготовления драгоценных аксессуаров он не подходит, так как не обладает свойствами, необходимыми ювелирам: ковкостью и пластичностью.

Элемент ценен только из-за особой прочности. Сплавы, в которые добавляют совсем малые дозы самого тяжелого металла, становятся невероятно износостойкими. Обычно им покрывают узлы, подвергающиеся постоянному трению.

История открытия

1803—1804 годы стали для самого тяжелого металла поворотными: именно в это время его открытие проходило практически в условиях соревнований.

Сначала английский химик Смитсон Теннант и его ассистент Уильям Хайд Уолластон, совершившие не одно важное открытие, обнаружили в процессе эксперимента с платиновыми рудами и азотной и соляной кислотами необычный осадок с характерным запахом и поделились своей находкой с другими.

Далее эстафету перехватили французские ученые Антуан де Фуркруа и Луи-Николя Воклен и на основе предыдущих и своих собственных исследований заявили об обнаружении нового элемента. Название ему дали «птен», что значит «летучий», так как в результате опытов они получали летучий черный дым.

Однако и Теннант не спал: он продолжал свои исследования и не упускал из виду опыты французов. В итоге Смитсон добился более конкретных результатов и в официальном документе, отправленном Лондонскому королевскому обществу, указал, что разделил птен на два родственных элемента: иридий («радуга») и осмий («запах»).

Где применяют

Список сфер применения довольно обширен: авиация, военная и ракетная техника, аэрокосмическая промышленность, медицина. Хотя производители оружия уже задумываются, чем можно заменить самый тяжелый в мире металл, так как осмий слишком трудно обрабатывать.

Почти половина мировых запасов самого тяжелого металла отдана на нужды химической промышленности. Им окрашивают живые ткани под микроскопом, обеспечивая их сохранность. Кроме того, его применяют как краситель при росписи фарфора.

Изотопы самого тяжелого металла используют для изготовления тары для хранения ядерных отходов.

А еще этот элемент используется для изготовления элитных «вечных» авторучек и часов «Ролекс».

Места природного залегания

В чистом виде осмий обнаружить практически нереально. Обычно этот тяжелый элемент встречается в соединении с иридием. Вещество содержится и на месте падения или в самих попавших на Землю метеоритах.

Заключение

Согласитесь, физика и химия за рамками школьной программы безумно интересна? В продолжение темы смотрите видео о самом тяжелом металле:

Подписывайтесь на обновления: обещаю впереди еще много занимательного! Делитесь статьей в соцсетях, а я буду ждать ваших комментариев!

Осмий VS Иридий

Споры о том, какой из двух элементов таблицы Менделеева является более тяжелым, до сих пор не стихают. За это право состязаются два самых тяжелых элемента таблицы — Осмий (76) и Иридий (77). Плотность обоих элементов приблизительно равна 22,6 г/см 3 .

В отличие от явного лидера, среди лёгких металлов — с тяжелыми не всё так просто. Потому рассмотрим оба этих металла.

Больше двух столетий прошло с тех пор, как появились первые сведения о платине – белом металле из Южной Америки. Долгое время люди были уверены, что это чистый металл, так же, как золото. Только в самом начале XIX в. Волластон сумел выделить из самородной платины палладий и родий, а в 1804 г. Теннант, изучая черный осадок, оставшийся после растворения самородной платины в царской водке, нашел в нем еще два элемента. Один из них он назвал осмием, а второй – иридием. Соли этого элемента в разных условиях окрашивались в различные цвета. Это свойство и было положено в основу названия: по-гречески слово ιρις, значит «радуга».

В 1841 г. известный русский химик профессор Карл Карлович Клаус занялся исследованием так называемых платиновых остатков, т.е. нерастворимого осадка, остающегося после обработки сырой платины царской водкой. «При самом начале работы, – писал Клаус, – я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания».

Клаус сообщил горному начальству о богатстве остатков. Власти заинтересовались открытием казанского ученого, которое сулило значительные выгоды. Из платины в то время чеканили монету, и получение драгоценного металла из остатков казалось очень перспективным. Через год Петербургский монетный двор выделил Клаусу полпуда остатков. Но они оказались бедными платиной, и ученый решил провести на них исследование, «интересное для науки».

«Два года, – писал Клаус, – занимался я постоянно этим трудным, продолжительным и даже вредным для здоровья исследованием» и в 1845 г. опубликовал работу «Химическое исследование остатков уральской платиновой руды и металла рутения». Это было первое систематическое исследование свойств аналогов платины. В нем впервые были описаны и химические свойства иридия.

Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, и объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе «химического исследования остатков уральской платиновой руды и металла рутения».

Какой же он, иридий?

Атомная масса элемента №77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия – частого спутника самородной платины. Самородного иридия в природе нет.

Иридий – серебристо-белый металл, очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см 3 , а плотность его постоянного спутника – осмия, второго по тяжести 22,61 г/см 3 . Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.

Естественное свойство иридия (он же платиноид!) – высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента №77.

Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl 2 , IrCl 3 и IrCl 4 . Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600°C. Единственное галоидное соединение, в котором иридий шестивалентен, – это фторид IrF 6 . Тонкоизмельченный иридий окисляется при 1000°C и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.

Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например Cl 3 и соли с комплексными анионами, например K 3 · 3H 2 O. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.

Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина, осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям «Родий», «Осмий» и «Платина».

Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.

Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать иридий и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом иридий на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600°C. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500. 600°C. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

Можно наносить иридиевые покрытия на металлы и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350. 400°C в контролируемой атмосфере, т.е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

Но покрытия – не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое – до 99 кг/мм 2 . Поскольку такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые сплавы привлекают и ювелиров – украшения из этих сплавов красивы и почти не изнашиваются. Из платино-иридиевого сплава делают также эталоны, иногда – хирургический инструмент.

В будущем сплавы иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой – достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты – они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

Иридий добавляют не только к платине. Небольшие добавки элемента №77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. То же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства – постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

Запасы на Земле

Как и другие металлы VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска.

Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента – не больше тонны в год. Во всем мире!

В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены – он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом – иридием-192. Ядра 192 Ir испускают гамма-лучи высокой энергии; период полураспада изотопа равен 74,4 суток. Часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию, которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью па фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

Эффект Мёссбауэра

В 1958 г. молодой физик из ФРГ Рудольф Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

Сердце бьется активнее

Одно из наиболее интересных применений платино-иридиевых сплавов за последние годы – изготовление из них электрических стимуляторов сердечной деятельности. В сердце больного стенокардией вживляют электроды с платино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него – на платино-придиевые электроды. Электроды, передавая импульсы на нервы, заставляют сердце биться активнее. Сейчас в СССР многие станции скорой помощи оборудованы подобными генераторами. В случае остановки сердца делают надрез ключичной вены, вводят в нее соединенный с генератором электрод, включают генератор, и через несколько минут сердце вновь начинает работать.

Изотопы – стабильные и нестабильные

В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время – самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада – ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого – иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

Полезные хлориридаты

Хлориридатами называют комплексные хлориды четырехвалентного иридия; общая их формула Me 2 . Благодаря хлориридатам можно в принципе уверенно разделять соединения таких похожих элементов, как натрий и калий. Хлориридат натрия растворим в воде, а хлориридат калия – практически нерастворим. Но для такой операции хлориридаты слишком дороги, так как дорог исходный иридий. Это не значит однако, что хлориридаты вообще бесполезны. Способность иридия образовывать эти соединения используют для выделения элемента №77 из смеси платиновых металлов.

Если с точки зрения практики элемент №76 среди прочих платиновых металлов выглядит достаточно заурядно, то с точки зрения классической химии (подчеркиваем, классической неорганической химии, а не химии комплексных соединений) этот элемент весьма знаменателен.

Прежде всего, для него, в отличие от большинства элементов VIII группы, характерна валентность 8+, и он образует с кислородом устойчивую четырехокись OsO 4 . Это своеобразное соединение, и, видимо, не случайно элемент №76 получил название, в основу которого положено одно из характерных свойств его четырехокиси.

Осмий обнаруживают по запаху

Подобное утверждение может показаться парадоксальным: ведь речь идет не о галогене, а о платиновом металле.

История открытия четырех из пяти платиноидов связана с именами двух английских ученых, двух современников. Уильям Волластон в 1803. 1804 гг. открыл палладий и родий, а другой англичанин, Смитсон Теннант (1761. 1815), в 1804 г. – иридий и осмий. Но если Волластон оба «свои» элемента нашел в той части сырой платины, которая растворялась в царской водке, то Теннанту повезло при работе с нерастворимым остатком: как оказалось, он представлял собой естественный природный сплав иридия с осмием.

Тот же остаток исследовали и три известных французских химика – Колле-Дескоти, Фуркруа и Воклен. Они начали свои исследования даже раньше Теннанта. Как и он, они наблюдали выделение черного дыма при растворении сырой платины. Как и он, они, сплавив нерастворимый остаток с едким кали, сумели получить соединения, которые все-таки удавалось растворить. Фуркруа и Воклен были настолько убеждены, что в нерастворимом остатке сырой платины есть новый элемент, что заранее дали ему имя – птен – от греческого πτηνος – крылатый. Но только Теннанту удалось разделить этот остаток и доказать существование двух новых элементов – иридия и осмия.

Название элемента №76 происходит от греческого слова οσμη, что означает «запах». Неприятный раздражающий запах, похожий одновременно на запахи хлора и чеснока, появлялся, когда растворяли продукт сплавления осмиридия со щелочью. Носителем этого запаха оказался осмиевый ангидрид, или четырехокись осмия OsO 4 . Позже выяснилось, что так же скверно, хотя и значительно слабее, может пахнуть и сам осмий. Тонкоизмельченный, он постепенно окисляется на воздухе, превращаясь в OsO 4 .

Осмий – оловянно-белый металл с серовато-голубым оттенком. Это самый тяжелый из всех металлов (его плотность 22,6 г/см 3) и один из самых твердых. Тем не менее осмиевую губку можно растереть в порошок, поскольку он хрупок. Плавится осмий при температуре около 3000°C, а температура его кипения до сих пор точно не определена. Полагают, что она лежит где-то около 5500°C.

Большая твердость осмия (7,0 по шкале Мооса), пожалуй, то из его физических свойств, которое используют наиболее широко. Осмий вводят в состав твердых сплавов, обладающих наивысшей износостойкостью. У дорогих авторучек напайку на кончик пера делают из сплавов осмия с другими платиновыми металлами или с вольфрамом и кобальтом. Из подобных же сплавов делают небольшие детали точных измерительных приборов, подверженные износу. Небольшие – потому что осмий мало распространен (5·10 –6 % веса земной коры), рассеян и дорог. Этим же объясняется ограниченное применение осмия в промышленности. Он идет лишь туда, где при малых затратах металла можно получить большой эффект. Например, в химическую промышленность, которая пытается использовать осмий как катализатор. В реакциях гидрогенизации органических веществ осмиевые катализаторы даже эффективнее платиновых.

Несколько слов о положении осмия среди прочих платиновых металлов. Внешне он мало от них отличается, но именно у осмия самые высокие температуры плавления и кипения среди всех металлов этой группы, именно он наиболее тяжел. Его же можно считать наименее «благородным» из платиноидов, поскольку кислородом воздуха он окисляется уже при комнатной температуре (в мелкораздробленном состоянии). А еще осмий – самый дорогой из всех платиновых металлов. Если в 1966 г. платина ценилась на мировом рынке в 4,3 раза дороже, чем золото, а иридий – в 5,3, то аналогичный коэффициент для осмия был равен 7,5.

Как и прочие платиновые металлы, осмий проявляет несколько валентностей: 0, 2+, 3+, 4+, 6+ и 8 +. Чаще всего можно встретить соединения четырех- и шестивалентного осмия. Но при взаимодействии с кислородом он проявляет валентность 8+.

Как и прочие платиновые металлы, осмий – хороший комплексообразователь, и химия соединений осмия не менее разнообразна, чем, скажем, химия палладия или рутения.

Ангидрид и другие

Несомненно, самым важным соединением осмия остается его четырехокись OsO 4 , пли осмиевый ангидрид. Как и элементарный осмий, OsO 4 обладает каталитическими свойствами; OsO 4 применяют при синтезе важнейшего современного лекарственного препарата – кортизона. При микроскопических исследованиях животных и растительных тканей четырехокись осмия используют как окрашивающий препарат. OsO 4 очень ядовит, он сильно раздражает кожу, слизистые оболочки и особенно вреден для глаз. Любая работа с этим полезным веществом требует чрезвычайной осторожности.

Внешне чистая четырехокись осмия выглядит достаточно обычно – бледно-желтые кристаллы, растворимые в воде и четыреххлористом углероде. При температуре около 40°C (есть две модификации OsO 4 с близкими точками плавления) они плавятся, а при 130°C четырехокись осмия закипает.

Другой окисел осмия – OsO 2 – нерастворимый в воде черный порошок – практического значения не имеет. Также не нашли пока практического применения и другие известные соединения элемента №76 – его хлориды и фториды, иодиды и оксихлориды, сульфид OsS 2 и теллурид OsTe 2 – черные вещества со структурой пирита, а также многочисленные комплексы и большинство сплавов осмия. Исключение составляют лишь некоторые сплавы элемента №76 с другими платиновыми металлами, вольфрамом и кобальтом. Главный их потребитель – приборостроение.

Как получают осмий

Самородный осмий в природе не найден. Он всегда связан в минералах с другим металлом платиновой группы – иридием. Существует целая группа минералов осмистого иридия. Самый распространенный из них – невьянскит, природный сплав этих двух металлов. Иридия в нем больше, поэтому невьянскит часто называют просто осмистым иридием. Зато другой минерал – сысертскит – называют иридистым осмием – в нем больше осмия. Оба эти минерала – тяжелые, с металлическим блеском, и это не удивительно – таков их состав. И само собой разумеется, все минералы группы осмистого иридия очень редки.

Иногда эти минералы встречаются самостоятельно, чаще же осмистый иридий входит в состав самородной сырой платины. Основные запасы этих минералов сосредоточены в СССР (Сибирь, Урал), США (Аляска, Калифорния), Колумбии, Канаде, странах Южной Африки.

Естественно, что добывают осмий совместно с платиной, но аффинаж осмия существенно отличается от способов выделения других платиновых металлов. Все их, кроме рутения, осаждают из растворов, осмий же получают отгонкой его относительно летучей четырехокиси.

Но прежде чем отгонять OsO 4 , нужно отделить от платины осмистый иридий, а затем разделить иридий и осмий.

Когда платину растворяют в царской водке, минералы группы осмистого иридия остаются в осадке: даже этот из всех растворителей растворитель не может одолеть эти устойчивейшие природные сплавы. Чтобы перевести их в раствор, осадок сплавляют с восьмикратным количеством цинка – этот сплав сравнительно просто превратить в порошок. Порошок спекают с перекисью бария BaO 3 , а затем полученную массу обрабатывают смесью азотной и соляной кислот непосредственно в перегонном аппарате – для отгонки OsO 4 .

Ее улавливают щелочным раствором и получают соль состава Na 2 OsO 4 . Раствор этой соли обрабатывают гипосульфитом, после чего осмий осаждают хлористым аммонием в виде соли Фреми Cl 2 . Осадок промывают, фильтруют, а затем прокаливают в восстановительном пламени. Так получают пока еще недостаточно чистый губчатый осмий.

Затем его очищают, обрабатывая кислотами (HF и HCl), и довосстанавливают в электропечи в струе водорода. После охлаждения получают металл чистотой до 99,9% O 3 .

Такова классическая схема получения осмия – металла, который применяют пока крайне ограниченно, металла очень дорогого, но достаточно полезного.

Чем больше, тем. больше

Природный осмий состоит из семи стабильных изотопов с массовыми числами 184, 186. 190 и 192. Любопытная закономерность: чем больше массовое число изотопа осмия, тем больше он распространен. Доля самого легкого изотопа, осмия-184, – 0,018%, а самого тяжелого, осмия-192, – 41%. Из искусственных радиоактивных изотопов элемента №76 самый долгоживущий – осмий-194 с периодом полураспада около 700 дней.

Карбонилы осмия

В последние годы химиков и металлургов все больше интересуют карбонилы – соединения металлов с СО, в которых металлы формально нульвалентны. Карбонил никеля уже довольно широко применяется в металлургии, и это позволяет надеяться, что и другие подобные соединения со временем смогут облегчить получение тех или иных ценных материалов. Для осмия сейчас известны два карбонила. Пентакарбонил Os(CO) 5 – в обычных условиях бесцветная жидкость (температура плавления – 15°C). Получают его при 300°C и 300 атм. из четырехокиси осмия и угарного газа. При обычных температуре и давлении Os(CO) 5 постепенно переходит в другой карбонил состава Os 3 (CO) 12 – желтое кристаллическое вещество, плавящееся при 224°C. Интересно строение этого вещества: три атома осмия образуют равносторонний треугольник с гранями длиной 2,88 Ǻ, а к каждой вершине этого треугольника присоединены по четыре молекулы СО.

Фториды спорные и бесспорные

«Фториды OsF 4 , OsF 6 , OsF 8 образуются из элементов при 250. 300°C. OsF 8 – самый летучий из всех фторидов осмия, т. кип. 47,5°». Эта цитата взята из III тома «Краткой химической энциклопедии», выпущенного в 1964 г. Но в III томе «Основ общей химии» Б.В. Некрасова, вышедшем в 1970 г., существование октафторида осмия OsF 8 отвергается. Цитируем: «В 1913 г. были впервые получены два летучих фторида осмия, описанные как OsF 6 и OsF 8 . Так и считалось до 1958 г., когда выяснилось, что в действительности они отвечают формулам OsF 5 и OsF 6 . Таким образом, 45 лет фигурировавший в научной литературе OsF 8 на самом деле никогда не существовал. Подобные случаи «закрытия» ранее описанных соединений встречаются не так уж редко».

Заметим, что и элементы тоже иногда приходится «закрывать». Остается добавить, что, помимо упомянутых в «Краткой химической энциклопедии», был получен еще один фторид осмия – нестойкий OsF 7 . Это бледно-желтое вещество при температуре выше –100°C распадается на OsF 6 и элементарный фтор.

По материалам n-t.ru

Этот базовый список из десяти элементов является самым «тяжёлым» по плотности на один кубический сантиметр. Однако обратите внимание, что плотность — это не масса, она просто показывает, насколько плотно упакована масса тела.

Теперь, когда мы это понимаем, давайте взглянем на самые тяжёлые во всей известной человечеству вселенной.

10. Тантал (Tantalum)

Плотность на 1 см³ — 16,67 г

Атомный номер тантала — 73. Этот сине-серый металл является очень твёрдым, а также имеет супервысокую температуру плавления.

9. Уран (Uranium)


Плотность на 1 см³ — 19,05 г

Обнаруженный в 1789 году немецким химиком Мартином Генрихом Клапортом (Martin H. Klaprot), металл стал настоящим ураном лишь почти сто лет спустя, в 1841 году, благодаря французскому химику Эжену Мелькиору Пелиго.

8. Вольфрам (Wolframium)


Плотность на 1 см³ — 19,26 г

Вольфрам существует в четырёх различных минералах, а также является самым тяжёлым из всех элементов, играющих важную биологическую роль.

7. Золото (Aurum)


Плотность на 1 см³ — 19,29 г

Говорят, деньги на деревьях не растут, чего не скажешь о золоте! Небольшие следы золота были обнаружены на листьях эвкалиптовых деревьев.

6. Плутоний (Plutonium)


Плотность на 1 см³ — 20,26 г

Плутоний демонстрирует красочное состояние окисления в водном растворе, а также может спонтанно изменять состояние окисления и цвета! Это настоящий хамелеон среди элементов.

5. Нептуний (Neptunium)

Плотность на 1 см³ — 20,47 г

Названный в честь планеты Нептун, он был обнаружен профессором Эдвином Макмилланом (Edwin McMillan) в 1940 году. Он также стал первым обнаруженным синтетическим трансурановым элементом из семейства актиноидов.

4. Рений (Rhenium)

Плотность на 1 см³ — 21,01 г

Название этого химического элемента происходит от латинского слова «Rhenus», что означает «Рейн». Он был обнаружен Вальтером Ноддаком (Walter Noddack) в Германии в 1925 году.

3. Платина (Platinum)

Плотность на 1 см³ — 21,45 г

Один из самых драгоценных металлов в этом списке (наряду с золотом), и используется для изготовления практически всего. В качестве странного факта: вся добытая платина (до последней частицы) могла бы поместиться в гостиной среднего размера! Не так много, на самом деле. (Попробуйте поместить в неё всё золото.)

2. Иридий (Iridium)


Плотность на 1 см³ — 22,56 г

Иридий был обнаружен в Лондоне в 1803 году английским химиком Смитсоном Теннантом (Smithson Tennant) вместе с осмием: элементы присутствовали в природной платине в качестве примесей. Да, иридий был обнаружен чисто случайно.

1. Осмий (Osmium)


Плотность на 1 см³ — 22,59 г

Не существует ничего более тяжёлого (на один кубический сантиметр), чем осмий. Название этого элемента происходит от древнегреческого слова «osme», что означает «запах», поскольку химические реакции его растворения в кислоте или воде сопровождаются неприятным, стойким запахом.

Обновлено: 05.11.2019 14:38:43

Эксперт: Залман Ривлин

*Обзор лучших по мнению редакции сайт. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

Наша планета богата ценными ресурсами, но есть и такие, количество которых измеряется крохами. Как ни странно, эти элементы – одни из самых востребованных в мире. В их числе и тяжелые металлы. Только представьте, 8-сантиметровый кубик тяжелейшего металла в мире весит целых 12 кг (!). Сегодня речь пойдет именно о «тяжеловесах» в мире металлов.

Топ-10 самых тяжелых по плотности металлов

Номинация место Металл Плотность
Топ-10 самых тяжелых по плотности металлов 1 16,64 г/см3
2 18,92 г/см3
3 19,21 г/см3
4 19,85 г/см3
5 19,85 г/см3
6 20,48 г/см3
7 21,01 г/см3
8 21,44 г/см3
9 22,53 г/см3
10 22,62 г/см3

Плотность: 16,64 г/см 3

Температура плавления/кипения: 3017 0 С/5458 0 С

Очень редкий металл, но далеко не самый тяжелый в мире. В естественных условиях представляет собой серебристо-белое твердое вещество с легким синеватым оттенком (оксидная пленка). Был обнаружен в далеком 1802 году, но сразу выделить его не удалось: до 1844-го его отождествляли с другим металлом – ниобием.

Тантал – один из самых тугоплавких в мире (по этому показателю он превосходит даже самый тяжелый металл планеты) и не вступает в реакцию с воздухом: окисление его поверхности наступает только при повышении температуры воздуха до 280 0 С, что в естественных условиях невозможно.

Одной из интересных особенностей тантала считается его парамагнетизм (при попадании в магнитное поле металл намагничивается в направлении этого поля). Кроме того, тантал поражает своей устойчивостью к воздействию агрессивных сред: его поверхность не «поддается» даже 70%-ной азотной кислоте. Применяется этот необычный металл в военной отрасли (при создании боеприпасов), медицине (при производстве протезов), в атомной промышленности (при создании ядерных реакторов) и пр.

Интересный факт: несмотря на высокую прочность, тантал очень пластичен (его можно сопоставить с золотом), поэтому чистый металл очень удобен в работе.

Плотность: 18,92 г/см 3

Температура плавления/кипения: 1132 0 С /3745 0 С

Главное и не лучшим образом характеризующее этот твердый металл отличие от других представителей рейтинга – его радиоактивность. Уран, будучи в естественных условиях, проходит долгий этап трансформации, состоящий из 14 этапов и завершающийся его преобразованием в свинец. Правда, процесс этот длится миллиарды лет.

В чистом виде уран обладает большим весом, серебристо-белым цветом, высокой пластичностью (он чуть мягче стали) и слабовыраженными парамагнитными свойствами. Уран легко окисляется при контакте с воздухом, а порошкообразное вещество самовоспламеняется при температуре около 150 0 С.

Основное и явное применение урана – ядерная промышленность. Активным «потребителем» металла считается ядерная энергетика (производство реакторов, силовых установок и пр.). В последние годы особую ставку начали делать на разработку методов добычи урана из морской воды, где концентрация твердого вещества – 3 мкг/л).

Плотность: 19,21 г/см 3

Температура плавления/кипения: 3422 0 С /3745 0 С

Свое довольно оригинальное название (в переводе с лат. – «волчья пена») получил оттого, что при сопровождении оловянной руды мешал выплавке олова, превращая его в пену шлака. То есть фактически пожирал как волк овцу.

Вольфрам представляет собой блестящее твердое вещество светло-серого цвета. Это – самый тугоплавкий металл на планете: температура его плавления близка к солнечной фотосфере. Кроме того, имеет самую высокую доказанную температуру кипения на планете. Правда, недавно появился «конкурент» – сиборгий с более высокой (предполагаемой) температурой плавления, но достоверно это пока неизвестно ввиду небольшой длительности существования металла.

В свое время вольфрам произвел настоящий фурор в промышленности и сегодня его используют как обязательную основу для жаропрочных сплавов. Кроме того, высокая прочность обеспечивает этому металлу широкое применение в различных сферах человеческой деятельности: его используют в авиационных двигателях, нитях накаливания, электровакуумном оборудовании и пр.

Плотность: 19,85 г/см 3

Температура плавления/кипения: 1064 0 С /2856 0 С

Один из самых твердых металлов на земле, но при этом отличающийся невероятной пластичностью: из него можно сделать лист толщиной всего 0,1 мкм (так называемое сусальное золото). Именно по этой причине благородный желтый металл нашел достойное место в ювелирном деле. Но при этом золото имеет высокую плотность, что значительно упрощает процесс его добычи.

Золото обладает очень высоким показателям электропроводимости, что могло бы сделать этот металл незаменимым в процессе создания микросхем, но – увы: стоимость исходного сырья весьма велика, а распространенность – мала.

Золото не вступает в реакцию с кислородом и большинством элементов. Металл не поддается воздействию кислот и щелочей (исключение – царская водка, которая служит для проверки чистоты металлов). Золото – один из немногих металлов, используемых не только в промышленности, но и на благо человеку (его активно применяют в гомеопатии, стоматологии). Кроме того, благородный металл нашел активное применение в банковском деле: он до сих пор является гарантом стабильности любой валюты и надежным инвестиционным инструментом.

Плотность: 19,85 г/см 3

«Младший брат» урана и обладатель высокой радиоактивности. В естественных условиях добывают, но мало и редко, поскольку это попросту нецелесообразно, зато его легко получить в процессе многоступенчатого преобразования урана. Стал первым химически искусственным веществом, производим в промышленных масштабах.

Для получения плутония используется уран обогащенного и природного типа. Несколько лет назад сообщалось о закрытии в 2010 году последнего в мире реактора, производящего плутоний (в России). Но в тот же год в Японии запустили ядерный реактор. Правда, долго проработать ему не пришлось по причине произошедшей через пару месяцев после запуска аварии: реактор остановили, а после трагедии на Фукусима-1 и вовсе передумали запускать. В 2016 было принято решение об утилизации реактора.

Из-за очевидного военного потенциала плутоний стали активно использовать при производстве ядерного оружия (так называемый оружейный плутоний), как источник энергии для космических кораблей и в качестве топлива для ядерных реакторов.

Плотность: 20,48 г/см 3

Температура плавления/кипения: 640 0 С /3235 0 С

Еще одно радиоактивное «детище» урана, полученное в ходе проведения ядерных реакций. Считается первым трансурановым элементом. Относительно мягкое вещество отличается хорошей ковкостью, медленно вступает в реакцию с воздухом, быстро окисляясь при высокой его температуре. На земле этот металл встречается в следовом количестве, поэтому его добыча в естественных условиях попросту бессмысленна.

Нептуний опасен для человека при радиоактивном распаде: около 70-80% его частиц оседает в костной ткани, что приводит к полному ее поражению (степень поражения зависит от валентности изотопов). Основное его применение – получение плутония.

Плотность: 21,01 г/см 3

Температура плавления/кипения: 3186 0 С /5596 0 С

Обнаружение плотного металла серебристого цвета было предсказано Менделеевым в далеком 1871 году, а фактическое его открытие произошло лишь спустя полтора столетия (в 1925-м). Рений стал последним среди открытых элементов со стабильным изотопом: все открытые позднее таковых не имели.

Рений – один из самых редких элементов нашей планеты. По своим геохимическим свойствам похож на вольфрам. Серебристо-белый металл считается одним из самых твердых и плотных среди всех существующих. В чистом виде рений пластичен уже при комнатной температуре, но при этом полностью сохраняет свою прочность даже при многократном нагреве или охлаждении.

Рений труднодоступен, а его получение весьма материалозатратно, поэтому металл является одним из самых дорогих: цена за 1 кг колеблется от 1000 до 10000 долларов. «Добыча» рения происходит преимущественно в процессе переработки молибденового и медного сырья.

Сфера применения рения обусловлена рядом его свойств (тугоплавкостью, устойчивостью к большинству реагентов и пр.). При этом учитывается его дороговизна: применение металла ограничено теми случаями, когда он дает преимущество перед использованием других. В основном, рений применяют при производстве ракетных деталей (в особенности, реактивных и ракетных двигателей).

Плотность: 21,44 г/см 3

Температура плавления/кипения: 1768 0 С /3825 0 С

«Выносливая» и твердая платина практически достигла вершины нашего рейтинга, что неудивительно: это один из самых тяжелых металлов в мире. Драгоценное вещество считается также одним из редчайших на планете. Кстати, даже так называемый самородный металл нельзя считать чистым: в нем содержится до 20% железа, а также родий, иридий, осмий, реже – медь.

Платина считается одним из самых инертных металлов, не вступающим в реакцию с кислотами и щелочами. Блестящий серебристый металл активно применяют в ювелирном и стекольном деле, медицине (хирургии), химической промышленности, автомобилестроении, а благодаря устойчивости к вакууму – еще и при создании космических аппаратов.

Интересный факт: преимущественная часть платиновых запасов мира «спрятана» в недрах всего лишь 5 стран – России, Китая, Зимбабве, ЮАР и США.

Плотность: 22,53 г/см 3

Фактически иридий делит первое место с осмием – разница в плотности этих веществ – сотые доли грамма. Тем не менее этот «тяжеловес», все же, на эту самую малость легче. Это – очень редкий, ценный металл, абсолютно не взаимодействующий с кислотами, водой и даже воздухом. Иридий (как и лидер рейтинга самых тяжелых металлов) – тугоплавкое вещество, плохо поддающееся обработке.

В переводе с греческого означает «радуга», что неудивительно, ведь иридиевые соли отличаются невероятной цветовой гаммой: от медно-красного до ярко-синего. Белый с легким серебристым, словно зеркальным оттенком иридий считается самым прочным и одним из редчайших на планете: за год добывается не более 10 тонн, причем большинство месторождений расположены в месте падения метеоритов.

Применяется в высокоточном машиностроении в качестве индикатора герметичности сварочных швов. Активно используется палеонтологами и геологами в качестве временного индикатора обнаруженного слоя той или иной породы. Нередко один из самых тяжелых металлов на планете применяют и для получения электроэнергии. В последние годы иридий получил довольно неожиданное и необычное применение: для электростимуляции нервов и при создании протезов глазного и ушного аппарата человека.

Плотность: 22,62 г/см 3

Температура плавления/кипения: 2466 0 С/4428 0 С

Самый тяжелый «представитель» периодической таблицы Менделеева, и, соответственно, самый тяжелый в мире металл. Год 1803-й стал для этого элемента фактически поворотным, поскольку в этот период времени его открытие происходило буквально в гоночных условиях: два ученых параллельно открыли осмий – Теннант и де Фуркруа. Но Теннант, все же, добился более четких и глубоких результатов, и в официальных документах, поданных королевскому обществу Лондона, указал, что найденный элемент условно делится на два металла – иридий и осмий.

Добыча осмия требует немалых затрат, поскольку он редкий и сложно поддающийся воздействию. Отсюда и внушительная стоимость – 15000 долларов за 1 грамм вещества. Плотность осмия лишь чуть-чуть превышает аналогичный показатель иридия, хотя свойства обоих видов пока не до конца изучены. Самый тяжелый металл в мире «недружелюбен» к высоким температурам: он очень тугоплавкий.

Осмий входит в группу платиновых элементов и условно благородный. И, хотя при застывании осмий образует красивые серебристо-голубые кристаллы, для создания ювелирных изделий он не подходит, поскольку абсолютно непластичен и плохо поддается ковке. Отличается специфическим запахом – чесночно-хлорная смесь.

Высоко ценится из-за своей прочности: металл часто добавляют в состав для изготовления узлов, подвергающихся частому и сильному трению. Такие сплавы становятся невероятно прочными и устойчивыми к любому воздействию.

Понравилось?

Нажмите на кнопку, если статья Вам понравилась, это поможет нам развивать проект. Спасибо!

ТОП 10 самых тяжелых металлов в мире + есть ли им применение в реальной жизни?

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото, серебро, медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк, которым было отравлено больше половины королевского двора во Франции. Так же и ртуть, которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

Платина, Плотность: 21,45 г/см3

Платина является чрезвычайно редким металлом на Земле со средним содержанием 5 микрограммов на килограмм. Южная Африка является крупнейшим производителем платины с 80% мирового производства, а также небольшим вкладом США и России. Это плотный, пластичный и нереактивный металл.

Помимо символа престижа (ювелирные изделия или любые аналогичные аксессуары), платина используется в различных областях, таких как автомобильная промышленность, где она используется для производства устройств контроля выбросов автомобилей и для переработки нефти. Другие малые области применения включают, например, медицину и биомедицину, оборудование для производства стекла, электроды, противоопухолевые препараты, датчики кислорода, свечи зажигания.

Платина Слиток Родий слиток кристаллы осмия

Почему золото и платина больше не самые дорогие металлы

Падение цен на металлы связано с различными факторами. Чтобы понять основные причины, разберём две ценнейших в прошлом драгоценности — золото и платину.

Платина

В первую очередь стоит понять, что цена зависит не только от стоимости добычи и редкости, но и от значимости металла. Например, цены на платину упали после 2015 года, когда произошёл скандал с дизельными двигателями. Оказалось, что они являются крайне вредными для природы. Так политика по отношению к дизелю кардинально изменилась и приоритет вновь отдали бензину.

Тут следует обратиться к компонентам, из которых производятся разные виды двигателей. В дизельных 70-80 % приходится на платину, 18-28 % на палладий, остальное — родий. Бензиновое соотношение же совершенно иное и составляет пропорцию 1:8:1, материалы всё те же.

Вкупе с изменённой политикой, цены на платину начали стремительно падать, а на палладий — расти. Таким образом, уже к 2018 году палладий очень сильно поднялся в цене, а в отдельных городах по всему миру со старых автомобилей стали спиливать катализаторы для извлечения драгоценных металлов.

График продажи

График продажи палладиума и платины

Золото

С ценами на золото ситуация совершенно иная. Основной причиной падения цен является повышение процентной ставки ФРС. То есть инвестировать в золото стало в разы дороже, а стоимость продажи не изменилась. Также на цену влияет стабильность на фондовом рынке: игроки предпочитают инвестировать в ценные бумаги, а не в золото.

Таким образом, инвесторам невыгодно вкладываться в золото. Единственным крупным покупателем на тот момент являлся Китай, который активно увеличивал свой золотой запас. Связанно это с тем, что в недалёком прошлом восточной стране пришлось распродать свои запасы, чтобы спасти население от голода.

Однако на данный момент спрос на золото вновь вырос. Самая главная причина заключается в инфляции доллара. Разумеется, из-за этого стал более неустойчивый и фондовый рынок, а золото стало привлекательно выделяться, как один из самых стабильных активов. Многие страны, в том числе и Россия, стали переводить активы из долларов в золото.

Золото

Цены на золото с 2011 до 2021 года

График

Инфляция доллара США по годам

Рений, Плотность :21,2 г/см 3

Элемент Рений назван в честь реки Рейн в Германии после того, как он был обнаружен тремя немецкими учеными в начале 1900-х годов. Как и другие металлы платиновой группы, рений также является драгоценным элементом Земли и имеет вторую самую высокую температуру кипения, третью самую высокую температуру плавления любого известного элемента на Земле.

Из-за таких экстремальных свойств рений (в виде суперсплавов) широко используется в лопатках турбин и движущихся соплах практически всех реактивных двигателей во всем мире. Это также один из лучших катализаторов риформинга нафты (жидкой углеводородной смеси), изомеризации и гидрирования.

самые дорогие металлы Иридий осмий самое тяжелое вещество на планете

Интересные факты: что ещё дороже золота

Немного интересных фактов: много различных вещей стоят больше золота, например, рог носорога, который можно купить по 110 долларов за грамм. Данная цена обусловлена тем, что добыть его крайне трудно, а животных становится все меньше и меньше. Но ценность рога можно назвать и завышенной, потому что он, в основном, состоит из кератина, который содержится и в человеческих волосах.

Носорог

Носорог

Антивещество

Антивещество — самая нестабильная субстанция, которую крайне сложно произвести. Является очень мощным веществом, которое позволяет вырабатывать уйму энергии. До конца оно не изучено. Предположительная его стоимость достигает 62 трлн долларов за грамм.

ТОП 10 самых дорогих металлов. Где они используются? Самый дорогой драгоценный металл в мире

Антивещество

Бриллиант

Бриллиант — это идеально обработанный и доведённый до совершенства алмаз. У него идеальный блеск, идеальные формы, идеальный вид. Стоимость за один грамм доходит до 50 тысяч долларов или более 3 млн рублей.

Вольфрам, Плотность: 19,25 г/см3

Наиболее распространенное использование вольфрама в лампах накаливания и рентгеновских трубах, где его высокая температура плавления важна для эффективной работы в условиях сильной жары. В чистом виде его температура плавления, пожалуй, самая высокая из всех металлов, найденных на Земле. Китай является крупнейшим производителем вольфрама в мире, затем следуют Россия и Канада.

Его чрезвычайно высокая прочность на растяжение и относительно небольшой вес также сделали его подходящим материалом для производства гранат и снарядов, где он легируются другими тяжелыми металлами, такими как железо и никель.

История открытия металлов

Оба элемента были открыты на заре XIX века ученым Смитсоном Теннантом. Многие исследователи того времени занимались изучением свойств сырой платины, обрабатывая ее «царской водкой». Только Теннанту удалось обнаружить в полученном осадке два химических вещества:

  • осадочный элемент со стойким запахом хлора ученый назвал осмием;
  • субстанция с меняющейся окраской получила название иридий (радуга).

Оба элемента были представлены единым сплавом, который ученому удалось разделить. Дальнейшим исследованием самородков платины занялся русский химик К. Клаус, тщательно исследовавший свойства осадочных элементов. Сложность определения самого тяжелого металла в мире заключается в невысокой разности их плотности, которая не является величиной постоянной.

слитки осмия Калифорний-252 Серебро Слиток Какой металл стал самым дорогим с 2021: стоимость в рублях и долларах

Тантал, Плотность: 16,69 г/см3

Тантал относится к тугоплавкой группе металлов, которая составляет незначительную долю в различных типах сплавов. Он твердый, редкий и обладает высокой устойчивостью к коррозии, что делает его идеальным материалом для высокопроизводительных конденсаторов, которые идеально подходят для домашних компьютеров и электроники.

Другое важное применение тантала — в хирургических инструментах и ​​в имплантатах тела из-за его способности непосредственно связываться с твердыми тканями внутри нашего тела.

Яркие характеристики самых плотных металлов

Добытые экспериментальным путем вещества представляют собой порошок, довольно трудно поддающийся обработке, ковка металлов требует очень высоких температур. Наиболее распространенной формой содружества иридия с осмием является сплав осмистого иридия, который добывают в месторождениях платины, пластах залегания золота.

Наиболее частым местом обнаружения иридия считаются метеориты, богатые железом. Самородного осмия в мире природы не найти, только в содружестве с иридием и другими компонентами платиновой группы. Залежи часто содержат соединения серы с мышьяком.

Особенности самого тяжелого и дорогого металла в мире

Среди элементов периодической таблицы Менделеева самым дорогостоящим считается осмий. Серебристый металл с голубоватым отливом принадлежит к платиновой группе благородных химических соединений. Свой блеск самый плотный, но очень хрупкий металл не теряет под воздействием высоких температурных показателей.

Характеристики

  • Элемент №76 Osmium имеет атомную массу 190,23 а.е.м.;
  • Расплавленное при температуре 3033°C вещество закипит при 5012°C.
  • Самый тяжелый материал обладает плотностью 22,62 г/ см³;
  • Структура кристаллической решетки имеет гексагональную форму.

Несмотря на изумительно холодный блеск серебристого отлива, осмий не годится для производства ювелирных изделий из-за высочайшей токсичности. Для плавки украшения потребовалась бы температура, как на поверхности Солнца, ведь самый плотный в мире металл разрушается при механическом воздействии.

Превращаясь в порошок, осмий взаимодействует с кислородом, реагирует на серу, фосфор, селен, на царскую водку реакция вещества очень медленная. Osmium не обладает магнетизмом, сплавы имеют склонность к окислению, формированию кластерных соединений.

Где применяют

Самый тяжелый и невероятно плотный металл обладает высокой износостойкостью, поэтому добавка его к сплавам значительно повышает их крепость. Применение осмия в основном связано с химической промышленностью. Кроме того, его используют для следующих нужд:

  • изготовления ёмкостей, предназначенных для хранения отходов ядерного синтеза;
  • для нужд ракетостроения, оружейного производства (боеголовки);
  • в часовой промышленности для изготовления механизмов брендовых моделей;
  • для изготовления хирургических имплантатов, деталей кардиостимуляторов.

Интересно, что самый плотный металл считается единственным в мире элементом, неподвластным воздействию агрессии «адской» смеси кислот (азотная и соляная). Алюминий, соединенный с осмием, становится настолько пластичным, что его можно вытягивать без разрыва.

Тайны самого редкого и плотного в мире металла

Принадлежность иридия к платиновой группе наделяет его свойством невосприимчивости к обработке кислотами и их смесями. В мире иридий получают из анодных шламов при медно-никелевом производстве. После обработки шлама царской водкой, выпавший осадок прокаливают, результатом чего становится добыча иридия.

Характеристики

Самый твердый металл серебристо-белого цвета обладает следующей группой свойств:

  • элемент таблицы Менделеева Iridium №77 обладает атомной массой 192,22 а.е.м.;
  • расплавленное при температуре 2466°C вещество закипит при 4428°C;
  • плотность расплавленного иридия – в пределах 19,39 г/см³;
  • плотность элемента при комнатной температуре – 22,7 г/см³;
  • кристаллическая решётка иридия ассоциируется с гранецентрированным кубом.

Тяжелый иридий не меняется под воздействием обычной температуры воздуха. Результатом прокаливания под воздействием нагревания при определенных температурах становится образование многовалентных соединений. Порошок свежего осадка иридиевой черни поддается частичному растворению царской водкой, а также раствором хлора.

Область применения

Хотя Iridium принадлежит к числу драгоценных металлов, для ювелирных изделий его применяют редко. Элемент, плохо поддающийся обработкам, весьма востребован при строительстве дорог, производстве автомобильных деталей. Сплавы с неподверженным окислению самым плотным металлом применяются для следующих целей:

  • изготовления тиглей для проведения лабораторных опытов;
  • производства специальных мундштуков для стеклодувов;
  • покрытия кончиков перьев и стержней шариковых ручек;
  • изготовления долговечных свечей зажигания для автомобилей;

Сплавы с изотопами иридия используют на сварочном производстве, в приборостроении, для выращивания кристаллов в составе лазерной техники. Применение самого тяжелого металла позволило осуществлять лазерную коррекцию зрения, дробление камней в почках и другие медицинские процедуры.

Хотя Iridium лишен токсичности и не опасен для биологических организмов, в природной среде можно встретиться его опасным изотопом – гексафторидом. Вдыхание паров ядовитого вещества ведет к мгновенному удушью и смерти.

Бериллий

Электрохимическая полировка металла

Этот долговечный металл ранее назывался глюцинием, потому что люди отметили его сладковатый вкус. Кроме того, у этого вещества еще много удивительных свойств. Он неохотно вступает в химические реакции. Чрезвычайно прочен: опытным путем установлено, что бериллиевая проволока толщиной в миллиметр способна удержать на весу взрослого человека. Для сравнения, алюминиевая проволока выдерживает лишь двенадцать килограммов.

Бериллий очень ядовит. При попадании в организм он способен заменять магний в костях, это состояние носит название бериллиоз. Он сопровождается сухим кашлем и отечностью легких, может привести к смерти. Ядовитость, пожалуй, единственный существенный недостаток бериллия для человека. В остальном же у него масса плюсов и масса способов применения: тяжелая промышленность, ядерное топливо, авиация и космонавтика, металлургия, медицина.


Бериллий очень легок, в сравнении с некоторыми щелочными металлами

Чем опасен осмий

Химическое соединение с осмием повреждает человеческие органы. Вдыхание паров приводит к смертельному исходу. У животных при интоксикации наблюдалось малокровие, и нарушалась функция легких.

А вы знаете, что тетра оксид осмия OsO4 довольно агрессивное соединение, и если отравится, на коже появляются пузырьки зеленого или черного цвета. Человеку приходится нелегко, так как лечиться придётся долго.

Тем, кто трудится на опасных производствах, следует относиться к себе осторожно. Для этого на предприятиях выдают защитные костюмы и респираторы.

Литература

  • Тяжелые металлы // Большой Энциклопедический словарь (рус.). — 2000. — статья в Большом Энциклопедическом словаре
  • И.И. Дедю.
    Тяжелые металлы // Экологический энциклопедический словарь. — Кишинев: Главная редакция Молдавской советской энциклопедии (рус.). — 1989. — статья в Экологическом словаре
  • Н. К. Чертко и др.
    Биологическая функция химических элементов. — Справочное пособие. — Минск, 2012. — 172 с. — ISBN 978-985-7026-39-5.
  • Присутствие макрофитов в водной системе ускоряет снижение концентраций меди, свинца и других тяжёлых металлов в воде. // Водное хозяйство России. 2009. No. 2. с. 58—67.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной — их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

самое тяжелое вещество во вселенной

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Нахождение в природе

Содержание осмия в земной коре приблизительно составляет 5·10−6 % по массе.

В самородном состоянии осмий встречается в виде твёрдых растворов с иридием, содержащих от 10 до 50 % осмия. Осмий встречается в полиметаллических рудах, содержащих также платину и палладий (сульфидные медно-никелевые и медно-молибденовые руды), в минералах платины и отходах от переработки золотосодержащих руд. Основные минералы осмия — относящиеся к классу твёрдых растворов природные сплавы осмия и иридия (невьянскит и сысертскит). Невьянскит образует плотные (ρ = 17000—22000 кг/м3) белые или светло-серые пластинчатые кристаллы гексагональной сингонии с твёрдостью 6—7 баллов по шкале Мооса. Содержание осмия в невьянските может достигать 21—49,3 %.

Сысертскит часто встречается вместе с невьянскитом. Он представляет собой серые кристаллы гексагональной структуры с твёрдостью 6 баллов по Моосу и плотностью 17800—22500 кг/м3. Кроме осмия и иридия, в состав этого минерала иногда может входить рутений.

Иногда эти минералы встречаются самостоятельно, чаще же осмистый иридий входит в состав самородной платины.

Месторождения

Основные месторождения осмистых иридиев сосредоточены в России (Сибирь, Урал), США (Аляска, Калифорния), Колумбии, Канаде, странах Южной Африки, Тасмании, Австралии. Казахстан является единственным экспортёром чистого осмия[источник не указан 419 дней

Крупнейшими запасами обладают месторождения Бушвельдского комплекса в Южно-Африканской Республике.

Осмий встречается также в виде соединений с серой и мышьяком (эрлихманит, осмиевый лаурит, осарситт). Содержание осмия в рудах, как правило, не превышает 1⋅10−5.

Вместе с другими благородными металлами встречается в составе железных метеоритов.

Технология получения

Подобно другим платиноидам, Osmium извлекают из материнской породы: медно-никелевой, платиновой, золотой.

осмий

Добыча осмия проходит по-разному:

  1. На аффинажном предприятии в процессе очистки платины. Это отработанная, но технологически сложная многоэтапная процедура. Вначале получается осадочный осмиридий. Он ценен сам по себе, но иногда два компонента требуется разделить. Для этого проводят цепочку химических реакций.
  2. Второй способ получения осмия – прокаливание обогащенной породы при 800-900°С. Осмий получается губчатым.
  3. Металл чистотой 99,99% получают методом химического транспортирования.

Однако потери при производстве металла велики, поэтому разрабатываются более эффективные технологии.

Источник https://shkolyariki.ru/prezentacii/samoe-stabilnoe-veshchestvo-samye-tyazhelye-metally-v.html

Источник https://svvaku.ru/rtut-samyi-tyazhelyi-metall-kakoi-samyi-tyazhelyi-metall-na-zemle-istoriya.html

Источник https://finance-culture.ru/zoloto-i-dragmetally/samyj-tyazhelyj-metall-v-mire.html