Содержание
Разложение плавильных материалов в доменной печи
Продукты сгорания топлива, поднимаясь вверх навстречу опускающейся шихте, непрерывно нагревают ее. Благодаря этому в различных зонах печи устанавливаются разные температуры.
В верхней части печи при сравнительно невысокой температуре (100—350°) загруженные шихтовые материалы просушиваются и происходит их разложение (выделение химически связанной воды, летучих веществ из горючего, разложение углекислых солей и т.д.).
Восстановление железа из окислов является основной целью доменного процесса и происходит при температуре начиная от 600° и выше.
В железных рудах железо может быть в виде следующих окислов: Fe2O3 Fe3O4 и FeO. Наиболее легко восстанавливается железо из окисла Fe2O3, более трудно из Fe3O4 и FeO.
Восстановление железа из окислов происходит в такой последовательности:
Основными восстановителями в процессе доменной плавки являются окись углерода (СО) и твердый углерод (С).
Удаление кислорода
Удаление кислорода с помощью СО называется косвенным (непрямым) восстановлением и протекает при температуре выше 570° по реакциям:
Связывание кислорода твердым углеродом называется прямым восстановлением. Для закиси железа этот процесс может быть выражен формулой
Реакция прямого восстановления протекает в доменной печи при температуре 950—1000°.
По данным акад. М.А. Павлова с помощью косвенного восстановления восстанавливается 40—60% всей железной руды, находящейся в доменной печи.
Восстановление окислов железа водородом
Восстановление окислов железа водородом в доменной печи осуществляется в той же последовательности, что и восстановление окисью углерода, но имеет меньшее значение.
Таким образом, железная руда при своем движении к горну печи постепенно восстанавливается; количество восстановленного железа на уровне распара составляет уже около 80%.
В шихтовых материалах доменной печи, помимо окислов железа, находятся также окислы и других элементов (например Мn, Ni, Cr, V, Si, P).
Окислы этих элементов восстанавливаются и частично переходят в чугун, частично в шлак. Восстановление большинства этих элементов осуществляется прямым путем в зоне температур 1100—1500°.
Схема восстановления железа в доменной печи – 5. Сталь. Сущность процесса получения стали методом прямого восстановления железа из руды. Приведите примеры восстановительных химических реакций при прямом восстановлении железа из руды.
2. Восстановление железа и других элементов в доменной печи из расплава.
Железо поступает в доменную печь в виде оксидов: агломерат вносит Fе2О. и немного Fе2О3 и FeO, окатыши – Fе2О3 иFе2О. и железная руда, если ее применяют, — Fе2О3 иFе2О, причем часть этих оксидов находится в виде химических соединений с другими оксидами.
Основная задача доменного процесса — обеспечение как можно более полного извлечения железа из этих оксидов путем их восстановления. Восстановление заключается в отнятии кислорода от оксида и получении из него элемента (или же оксида с меньшим содержанием кислорода). Его осуществляют с помощью восстановителя — вещества, к которому переходит кислород благодаря тому, что у восстановителя большее химическое сродство к кислороду, чем у восстанавливаемого элемента. Таким образом в процессе восстановления одно вещество теряет кислород (восстанавливается), а другое приобретает его (окисляется). В общем виде процесс восстановления описывается уравнением:
где М — восстанавливаемый металл; В — восстановитель;
МО — восстанавливаемый оксид; ВО — оксид восстановителя.
В соответствии с выявленными акад. А.А.Байковым закономерностями восстановление оксидов железа протекает ступенчато от высших к низшим:
Fе2О3 – Fе2О — FeO — Fe.
Поскольку при температурах ниже 570 0С оксид FeO неустойчив и разлагается (на Fе2О и Fe), схема восстановления при температурах ниже 570 0С следующая:
Fе2О3 – Fе2О — Fe.
Восстановителями оксидов железа в доменной печи служат углерод, оксид СО и водород. Восстановление углеродом принято называть прямым восстановлением, а газами — косвенным. Реакции косвенного восстановления оксидом углерода следующие:
при температуре > 570 0С:
1) 3Fе2О3 + СО = 2Fе2О. + CO2 + 53 740;
2) Fе2О + СО = 3FeO + CO2 + 36680;
3) FeO + СО = Fe + CO2 + 16060;
при температуре < 570 0С
1) 3Fе2О3 + СО = 2Fе2О. + CO2 + 53740;
2) 1/4Fе2О. + СО = 3/4Fe + CO2 + 2870.
Их характерной особенностью является то, что продуктом реакций всегда является COz, и то, что они идут без затрат тепла. Реакции прямого восстановления углеродом протекают с образованием Са и требуют значительных затрат тепла, например:
FeO + С = Fe + СО — 152670.
Необходимо отметить, что приведенная запись реакции прямого восстановления не отражает механизма ее протекания. Дело в том, что непосредственное взаимодействие углерода с твердыми оксидами ограничено, так как поверхность контакта между неровными кусками очень мала. Поэтому фактически прямое восстановление протекает через газовую фазу и состоит из двух стадий:
FeO + СО = Fe + CO2, CO2 + С = 2СО,
что после суммирования дает итоговую реакцию прямого восстановления
Таким образом главное, что отличает прямое восстановление от косвенного, это расходование углерода, а это означает, что с развитием реакций прямого восстановления сокращается количество углерода, достигающего фурм.
Косвенное восстановление водородом, содержание которого в атмосфере доменной печи может достигать 8-12 %, протекает по следующим реакциям:
3Fе2О3 + Н2. = 2Fе3О4 + Н2О — 4200;
Fе3О4 + Н2 = 3FеО + h3O — 62410; FеО + Н2 = Fе + h30 — 27800.
Сравнение равновесных характеристик этих реакций и реакций восстановления оксидом углерода показывает, что при температурах выше 810 0C водород является более сильным восстановителем, чем CO, а при меньших, чем 810 ОС, температурах — более слабым, Т.е. при этих температурах у водорода меньше химическое сродство к кислороду, чем у CO. Вместе с тем опыт показал, что в доменной печи как при высоких (> 810 ОС), так и при более низких температурах водород является более энергичным восстановителем, чем CO. Добавка водорода и повышение его концентрации в газовой фазе ведет к ускорению процесса восстановления и увеличению степени косвенного восстановления железа. Это объясняется двумя причинами. Во-первых, благодаря малым массе и размерам молекул водорода они более подвижны, чем СО, быстрее диффундируют в поры агломерата и проникают в более мелкие поры и трещины, куда молекулы со проникнуть не могут, — все это заметно увеличивает поверхность взаимодействия. Во-вторых, известно, что молекулы Н2 многократно участвуют в процессе восстановления. Эта особенность водорода как восстановителя связана с тем, что при температурах доменного процесса и наличии избытка углерода и СО водяные пары существовать в печи не могут. В зоне высоких температур (850-1000 0С и более) пары Н20 разлагаются углеродом: Н2О + С = Н2 + СО; при температурах ниже 8100С идет реакция: Н2О + СО =Н2+ С02. Соответственно Н2О, образующаяся при реакциях восстановления водородом, тут же взаимодействует с углеродом кокса, либо с СО по приведенным выше реакциям и вновь переходит в водород. Этот образовавшийся водород вновь реагирует с оксидами железа и так несколько раз по мере подъема от горна до колошника. Иначе говоря, происходит регенерация водорода с его повторным участием в восстановлении. Сам же водород Н процессе восстановления является как бы промежуточным реагентом или переносчиком кислорода от оксидов железа к СО или углероду и в конечном счете к газовой фазе печи. При этом количество водорода в газовой фазе может не изменяться.
В целом ход процесса восстановления железа в доменной печи можно охарактеризовать следующим образом. Во всем объеме печи, начиная от верха колошника до участков с температурой 900- 1000 ОС, протекают процессы косвенного восстановления газом СО и отчасти водородом. В этой зоне косвенного восстановления все высшие оксиды железа успевают восстановиться до FеО, а часть FеО восстанавливается до железа, причем частицы восстановленного железа обнаруживаются уже в колошнике. Вместе с тем, часть FеО восстанавливается до железа прямым путем в зоне высоких температур (> 900-10000C). При этом в зонах с температурами свыше 1100-1250 ОС, когда сформировался шлак, железо восстанавливается прямым путем из жидкого шлака при стекании его капель вниз между кусками кокса. Железо при восстановлении получается в твердом виде; частицы железа, восстановившиеся из материалов, находящихся в твердом виде, имеют форму губки.
В доменной печи железо восстанавливается почти полностью. Степень восстановления железа составляет 0,99-0,998, а это означает, что 99-99,8 % железа переходит в чугун и лишь 0,2-1,0 % переходит в шлак.
Представление о возможности восстановления элементов, входящих в состав доменной шихты, может быть получено на основании термодинамических данных, характеризующих прочность их оксидов, т.е. величину их химического сродства к кислороду. Элементы доменной шихты по возрастанию сродства к кислороду располагаются в следующем порядке: Сu, As, Ni, Ре, Р, Zn, Мn, Y, Cr, Si, Ti, Al, Mg, Са. Соответственно, степень восстановления элементов тем меньше, чем правее стоит элемент в приведенном ряду.
Такие элементы как никель, медь, мышьяк, подобно железу и фосфору, почти целиком восстанавливаются в печи и переходят в чугун.
Ванадий и хром восстанавливаются аналогично марганцу соответственно на 70-80 и на 80-90 %, а титан — аналогично кремнию. Степень восстановления титана ниже, чем кремния. Алюминий, магний и кальций в доменной печи не восстанавливаются.
Особо следует отметить поведение цинка. Он содержится в некоторых железных рудах, а также попадает в доменные печи в составе добавляемых в шихту железосодержащих отходов — конвертерных шламов, колошников и пыли и др. поступая в печь в основном в виде ZnO, он легко восстанавливается при температурах > 950 0С: ZnO + С = Zn + СО и, испаряясь, поднимается с газами вверх. В зонах с умеренными температурами Zn вновь окисляется до ZnO, реагируя с CO2 и оксидами железа. Часть ZnO (10-30%) уносится из печи доменным газом; часть в смеси с сажистым углеродом осаждается на стенках печи, образуя большие настыли; часть осаждается в швах и порах футеровки, вызывая увеличение ее объема и возможность разрыва кожуха печи; часть осаждается на кусках шихты, и опускается вниз, где вновь восстанавливается, создавая циркуляцию цинка в печи, способствуя его накоплению с увеличением вредных отложений.
Доменная печь. Выплавка чугуна. Печь для выплавки чугуна. Схема доменной печи. Устройство доменной печи. Работа доменной печи. Параметры и конструкция доменной печи.
При выплавке чугуна решаются задачи:
- Восстановление железа из окислов руды, науглероживание его и удаление в виде жидкого чугуна определенного химического состава.
- Оплавление пустой породы руды, образование шлака, растворение в нем золы кокса и удаление его из печи.
Устройство и работа доменной печи
Доменная печь имеет стальной кожух, выложенный огнеупорным шамотным кирпичом. Рабочее пространство печи включает колошник 6, шахту 5, распар 4, заплечики 3, горн 1, лещадь 15. В верхней части колошника находится засыпной аппарат 8, через который в печь загружают шихту. Шихту подают в вагонетки 9 подъемника, которые передвигаются по мосту 12 к засыпному аппарату и, опрокидываясь, высыпают шихту в приемную воронку 7 распределителя шихты. При опускании малого конуса 10 шихта попадает в чашу 11, а при опускании большого конуса 13 – в доменную печь, что предотвращает выход газов из доменной печи в атмосферу.
Схема доменной печи
При работе печи шихтовые материалы, проплавляясь, опускаются, а через загрузочное устройство подают новые порции шихты, чтобы весь полезный объем был заполнен.
Производство чугуна. Доменное производство чугуна. Технология производства чугуна. Процесс производства чугуна.
Полезный объем доменной печи – объем, занимаемый шихтой от лещади до нижней кромки большого конуса засыпного аппарата при его опускании. Полезная высота доменной печи (Н) достигает 35 м, а полезный объем – 2000…5000 м 3 .
В верхней части горна находятся фурменные устройства 14, через которые в печь поступает нагретый воздух, необходимый для горения топлива. Воздух поступает из воздухонагревателя, внутри которого имеются камера сгорания и насадка из огнеупорного кирпича, в которой имеются вертикальные каналы. В камеру сгорания к горелке подается очищенный доменный газ, который, сгорая, образует горячие газы. Проходя через насадку, газы нагревают ее и удаляются через дымовую трубу. Через насадку пропускается воздух, он нагревается до температуры 1000…1200 0 С и поступает к фурменному устройству, а оттуда через фурмы 2 – в рабочее пространство печи. После охлаждения насадок нагреватели переключаются.
Горение топлива. Вблизи фурм природный газ и углерод кокса, взаимодействуя с кислородом воздуха, сгорают:
В результате горения выделяется большое количество теплоты, в печи выше уровня фурм развивается температура выше 2000 0 С. Продукты сгорания взаимодействуют с раскаленным коксом по реакциям:
Образуется смесь восстановительных газов, в которой окись углерода CO является главным восстановителем железа из его оксидов. Для увеличения производительности подаваемый в доменную печь воздух увлажняется, что приводит к увеличению содержания восстановителя. Горячие газы, поднимаясь, отдают теплоту шихтовым материалам и нагревают их, охлаждаясь до 300…400 0 С у колошника. Шихта (агломерат, кокс) опускается навстречу потоку газов, и при температуре около 570 0 С начинается восстановление оксидов железа.
Восстановление железа в доменной печи. Восстановление железа происходит по мере продвижения шихты вниз по шахте и повышения температуры от высшего оксида к низшему, в несколько стадий:
Температура определяет характер протекания химических реакций. Восстановителями окcидов железа являются твердый углерод, оксид углерода и водород. Восстановление твердым углеродом (коксом) называется прямым восстановлением, протекает в нижней части печи (зона распара), где более высокие температуры, по реакции:
FeO + C = Fe + CO — Q
Восстановление газами (CO и H2) называется косвенным восстановлением, протекает в верхней части печи при сравнительно низких температурах, по реакциям:
За счет CO и H2 восстанавливаются все высшие оксиды железа до низшего и 40…60 % металлического железа.
При температуре 1000…1100 0 C восстановленное из руды твердое железо, взаимодействуя с оксидом углерода, коксом и сажистым углеродом, интенсивно растворяет углерод. При насыщении углеродом температура плавления понижается и на уровне распара и заплечиков железо расплавляется (при температуре около 1300 0 С).
Капли железоуглеродистого сплава, протекая по кускам кокса, дополнительно насыщаются углеродом (до 4%), марганцем, кремнием, фосфором, которые при температуре 1200 0 C восстанавливаются из руды, и серой, содержащейся в коксе.
В нижней части доменной печи образуется шлак в результате сплавления окислов пустой породы руды, флюсов и золы топлива. Шлаки содержат Al2O3, CaO, MgO, SiO2, MnO, FeO, CaS. Шлак образуется постепенно, его состав меняется по мере стекания в горн, где он скапливается на поверхности жидкого чугуна, благодаря меньшей плотности. Состав шлака зависит от состава применяемых шихтовых материалов и выплавляемого чугуна.
Чугун выпускают из печи каждые 3…4 часа через чугунную летку 16, а шлак – каждые 1…1,5 часа через шлаковую летку 17 (летка – отверстие в кладке, расположенное выше лещади). Летку открывают бурильной машиной, затем закрывают огнеупорной массой. Сливают чугун и шлак в чугуновозные ковши и шлаковозные чаши.
Чугун поступает в кислородно-конвертерные (см. Кислородный конвертер) или мартеновские цехи (см. Мартеновская печь), или разливается в изложницы разливочной машиной, где он затвердевает в виде чушек-слитков массой 45 кг.
Восстановительные процессы в доменной печи
Осуществление процессов восстановления окислов железа, содержащихся в агломерате, составляет главную цель доменной плавки и приводит к образованию чугуна, в состав которого переходят, кроме железа, марганец, кремний и фосфор из частично восстанавливаемых окислов шихты. Восстановителями окислов железа служат СО, Н2 и С. При умеренных температурах восстановителями являются составляющие доменного газа — окись углерода и водород. Водород содержится в газовой фазе, проходящей через доменную печь, в гораздо меньших количествах, чем СО, хотя его содержание заметно повышается при вдувании газового топлива через фурмы. Восстановление окислов железа газами принято называть косвенным.
Содержания окиси и двуокиси углерода, пересчитанные на 100% этих компонентов в доменном газе и характеризующие его восстановительную способность, показаны в зависимости от температуры в печи на рис. 32 (заштрихованная область). Равновесие окислов углерода с углеродом характеризуется кривыми 1,0 и 0, 4, относящимися к суммарному избыточному давлению СО и СО 2—1013 и 405 кн/м 2 (1—0,4 ат) соответственно. Из графика видно, что газовая фаза близка к равновесию с углеродом лишь при температурах 900° С и выше. В области более низких температур (500—700° С) различия действительных и равновесных с углеродом содержаний СО весьма велики. Следует отметить, что это является выгодным для доменной плавки условием, так как кривые равновесия СО и СO2 с углеродом при низких температурах соответствуют окислительным составам газовой фазы (проходят через область Fе3O4 диаграммы). Весьма малая скорость реакции распада окиси углерода обусловливает сохранение восстановительных свойств газовой фазы вплоть до выхода ее на колошник печи и использование на восстановление окислов железа, начиная с верхних горизонтов.
Современная теория восстановления окислов металлов основана на трудах советских ученых А. А. Байкова, М. А. Павлова, И. А. Соколова, С. Т. Ростовцева, Г. И. Чуфарова. В соответствии с принципом последовательности превращений, установленным А. А. Байковым, восстановление окислов железа протекает ступенчато — от высшего окисла к низшему вплоть до образования металлического железа.
Термодинамическая неустойчивость закиси железа (вюстита) при температурах ниже 570° С обусловливает двухступенчатую низкотемпературную схему восстановления Fe2O3 с промежуточным образованием только магнитной окиси железа Fe3O4, восстанавливающейся до железа по реакции:
Для доменного процесса большее значение имеет трехступенчатая схема восстановления, включающая образование и восстановление вюстита. Процессы протекают при температурах выше 570° С по следующим реакциям:
Состояние равновесия для указанных реакций характеризуется соответствующими соотношениями парциальных давлений СО и СO2. Восстановление возможно при исходных составах газовой фазы, допускающих процесс с уменьшением изобарного потенциала, т. е. при
Для реакции 1 равновесный состав газовой фазы практически совпадает с ординатой 100% СO2 на рис. 32. Равновесный состав газовой фазы для реакций 2 и 3 соответствует на этом рисунке кривым 2 и 3.
Для обеспечения этого условия в доменном газе должен иметься избыток СО по сравнению с равновесным содержанием. Как видно из рис. 32, это условие выполняется по всей высоте доменной печи для всех ступеней восстановления. Доменный газ выходит через колошник при неполном использовании его восстановительных возможностей. Это связано с недостаточными скоростями реакций взаимодействия газовой фазы с железосодержащими материалами, особенно в верхних горизонтах доменной печи при пониженных температурах. Увеличить степень использования восстановительной способности газа можно улучшением условий его контакта с железосодержащими материалами и более тщательной их подготовкой к доменной плавке.
Механизм процессов восстановления окислов железа газами является сложным и включает ряд стадий, имеющих химическую и диффузионную природу. В условиях пониженных температур и пониженных давлений значительную роль играют, согласно адсорбционно-автокаталитической теории, стадии адсорбции газа- восстановителя на поверхности окислов, реакции адсорбированных молекул восстановителя с кислородом кристаллической решетки окислов, превращения ее в кристаллическую решетку металла и десорбции газообразных продуктов реакции. При более высоких температурах и давлениях, особенно при значительных размерах кусков восстанавливаемых материалов, большое значение приобретают диффузионные стадии процесса восстановления, в частности диффузия через восстановленный слой металла.
В зависимости от состояния этого слоя диффузия может иметь различный характер. При открытых сообщающихся порах может осуществляться перенос газовых молекул восстановителя и продукта восстановления навстречу друг другу в газовой фазе, заполняющей поры.
При плотной кристаллической структуре восстановленного слоя вместо нереализуемой в этих условиях диффузии газовых молекул следует рассматривать диффузию ионов (главным образом, Fе2+, Fe3+) эстафетным перемещением по вакансиям кристаллической решетки (вюстит) или миграцией по междоузлиям решетки (магнетит и гематит).
В условиях доменного процесса при восстановлении преимущественно пористого материала сложной структуры и образовании пористых продуктов, по-видимому, преобладает диффузия газообразных реагентов через поры в твердых фазах. Однако в отдельных зернах диффузия должна осуществляться через кристаллическую структуру. Поскольку процессы восстановления газами происходят в доменной печи в широкой температурной области (от 200 до 1000° С) при значительном изменении состояния восстанавливаемых материалов и изменении свойств газового потока, влияние основных факторов на скорости восстановления может быть различным в зависимости от изменения условий. Главными факторами, влияющими на скорость восстановления окислов железа в условиях доменной плавки, являются свойства самих восстанавливаемых материалов, температурные условия восстановления и свойства газового потока восстановителя.
38 Получение чугуна. Исходные материалы. Сущность процесса доменной плавки
Процесс получения чугуна из железных руд называют доменным.
— железные руды (магнитный, красный, бурый и шпатовый железняк+комплексные железные руды для улучшения св-в чугуна)
— топливо — кокс – топливо+нагрев печного пространства до необходимой температуры; обеспечивает восстановление окислов железа. Возможна частичная замена кокса газом или мазутом
— флюсы — известняк CaCO3 или доломитизированный известняк, содержащий CaCO3 и MgCO3, так как в шлак должны входить основные оксиды (CaC, MgO), которые необходимы для удаления серы из металла. В их состав входит минимальное количество вредных примесей.
Получение чугуна в доменной печи заключается в восстановлении железа из оксидов железной руды. Чтобы отделить примеси, содержащиеся в руде и коксе (продукте переработки каменного угля), их нужно расплавить, однако температура плавления у них намного выше, чем у чугуна.Ее понижают, вводя флюсы (плавни), чаще всего — известняк.
Загружаемая сверху в доменную печь шихта, содержащая железную руду, кокс и флюсы, постепенно перемещается вниз и попадает в зоны все более высокого нагрева. В нижней части домны (горне) температура возрастает до 1 600 °С. Сюда стекают жидкие чугун и шлак. Более легкий шлак скапливается над чугуном. Периодически шлак и чугун выпускают и направляют для дальнейшей переработки.
Вдуваемый в доменную печь воздух, нагретый до 700…800°С, обеспечивает горение кокса с образованием окиси углерода (СО), которая отнимает кислород у оксидов железа. При температуре около 1 000 “С имеет место науглероживание восстановленного железа и превращение его в чугун:
Пустая порода и флюсы также претерпевают определенные превращения и переходят в шлак. Азот воздуха, СО и С02 образуют доменный газ, удаляемый из домны через колошник по газопроводам.
В материалах шихты имеются вещества, дающие чугуну полезные (марганец, кремний) и вредные (сера, фосфор) примеси. Сера может быть удалена из чугуна при сильнооснбвном шлаке и высокой температуре процесса. Фосфор же удалить из чугуна нельзя. Чтобы чугун не содержал фосфора, шихта должна быть свободна от Р205.
39 Устройство и работа доменной печи схема
Доменная печь состоит: из колошника 1, куда при опускании колошникового затвора 2 поступают руда, плавень и топливо, шахты 3, в которой протекают реакции восстановления железа, «распара» 4, где заканчивается шлакообразование, и «заплечиков» 5, по которым загруженные материалы постепенно опускаются в горн 6, превращаясь в расплавленный чугун и расплавленный шлак. Горн выкладывают из высококачественного шамотного кирпича; снаружи он покрыт стальными листании и охлаждается водой. Доменная печь имеет стальной сварной кожух. Топливо сгорает у (воздушных фурм 7, к которым через кольцевую воздушную трубу 8 и отходящие от нее рукава подводится нагретый воздух. В нижней части горна имеется чугунная летка» 10 — отверстие для выпуска чугуна. Выше расположена «шлаковая летка» 11 для выпуска шлака. Горячие газы, образующиеся в печи, отводят через газопроод 12, очищают их и используют для подогрева воздуха, подаваемого в печь, и для других нужд завода (для нагревания мартеновских печей, в которых идет передел чугуна на сталь).
Руду, плавень (флюс) и кокс загружают в доменную печь сверху чередующимися слоями. По мере сгорания кокса и расплавления слоев, находящихся внизу, вся масса в печи постепенно опускается, сверху же загружают все новые порции материалов. Горение в доменной печи поддерживается воздухом, который вдувают под давлением около 1,5 ати, предварительно нагревая до 800—900°. Подогревают воздух в особых воздухонагревателях (устаревшее название «каупер»), представляющих собой круглую башню со стальным кожухом и внутренней кладкой из огнеупорного кирпича с вертикальными каналами.
Отходящие из доменной печи газы содержат значительное количество окиси углерода (СО). При горении она выделяет большое количество тепла. Газы очищают от пыли в специальном устройстве и направляют в воздухонагреватель, где СО сгорает, нагревая огнеупорную кладку. Затем в воздухонагреватель нагнетают воздух. Проходя через нагретые каналы огнеупорной кладки, воздух подогревается, газы же из доменной печи в это время направляются в другой воздухонагреватель. Материалы, загруженные в верхнюю часть доменной печи, высушиваются и постепенно прогреваются. В нижележащих зонах печи окись железа (Fe2O3 или Fe3O4), содержащаяся в руде, восстанавливается окисью углерода до закиси железа (FeO). Дальше закись железа восстанавливается до чистого железа: в средних и нижних зонах доменной печи появляются его первые губчатые комочки. Восстановленное железо, опускаясь в печи, постепенно насыщается углеродом. Получившийся карбид железа (Fe3C) растворяется в железе при высоких температурах и науглероживает его, понижая температуру плавления сплава. Поэтому в верхней части «заплечиков» при t = 1250—1300° появляются первые капли жидкого сплава, которые стекают вниз, еще больше насытившись углеродом и растворив часть кремния и марганца. Так образуется. чугун, содержащий до 3,5—4,0% углерода и стекающий в расплавленном состоянии на дно горна. Одновременно идет реакция между пустой породой и плавнями, в результате которой образуется жидкий шлак, также стекающий вниз. Шлак всплывает поверх чугуна, защищая его от окисления. Время от времени шлак сливают через шлаквую летку, чугун же периодически выпускают через нижнюю летку. Таким образом осуществляется непрерывный процесс выплавки чугуна. Для получения 1 т чугуна (передельного) примерно расходуется: железной руды 1,6 г, известняка 0,4 т, марганцевой руды 0,1 т,кокса 0,9 т.
Доменный процесс печи — схема получения чугуна, химические процессы, физика и продукты
Сталями принято считать сплавы железа с углеродом с содержанием последнего до 2,14%. Все, что имеет более высокое содержание углерода – это чугуны. Получают стали на основе двух процессов — доменного (в результате получается передельный чугун) и собственно получения стали, когда из передельного чугуна путем выжигания углерода и добавки легирующих элементов получают стали и сплавы нужной марки и нужного состава.
Сырье
Основой для получения чугуна в доменном процессе служат железные руды. Поскольку железо обладает сравнительно большим сродством к кислороду, оно в чистом виде в земной коре не обнаруживается, а находится в виде соединений с кислородом и диоксидом углерода.
Основные руды железа, которые используются в металлургическом производстве – это окись-закись железа (Fe3O4 – магнетит, магнитный железняк), окись железа (Fe2O3 — красный железняк, 2Fe2O3 * 3H2O — бурый железняк) и карбонат железа FeCO3 . Естественно, что в чистом виде данные вещества не встречаются, а имеют примеси других элементов (чаще всего серы и фосфора) и других веществ в виде сопутствующих пород, не образующих с целевым продуктом химических соединений (обычно SiO2, Al2O3, CaO, MgO).
Кроме того, в больших количествах в виде руд имеется железный колчедан FeS2, но он очень редко применяется в металлургии, так как выплавляемое из него железо получается очень низкого качества из-за большого содержания серы.
В результате проведения специальных технологий дробления руды и флотационного процесса значительную часть пустой породы удается отделить от целевого продукта, в результате чего в ряде случаев удается повысить содержание железа в руде до 63-67%, а иногда до 69-72%.
Однако полностью удалить пустую породу не удается, эта операция осуществляется в самом доменном процессе путем перевода пустой породы в шлаки, которые отделяются от чугуна.
Процесс и схемы
Процесс доменной плавки (процесс получения передельного чугуна) осуществляется в шахтных печах (домнах). Домна, схематический разрез которой дан на рис. 5.1, представляет из себя устройство в виде конуса в верхней части высотой в несколько десятков метров, обложенное изнутри огнеупорным кирпичом и снаружи стянутое железными обручами или окруженное сплошной железной оболочкой. Верхняя часть домны носит название шахты и заканчивается наверху отверстием — колошником, которое закрывается подвижной воронкой – колошниковым затвором. Самая широкая часть домны называется распаром. Нижняя часть домны образует горн. В горне имеются отверстия – фурмы, через которые в печь вдувается горячий воздух.
При запуске доменную печь загружают сначала углем (коксом), а потом послойно смесью руды с флюсом и углем и чистым углем. Нижние слои угля зажигают, после чего горение и необходимая для выплавки температура поддерживаются вдуванием в горн подогретого в рекуператорах тепла воздуха. Последний поступает в кольцевую трубу, расположенную вокруг нижней части печи, а из нее по распределительным трубкам через фурмы в горн. В горне уголь сгорает, превращаясь в углекислый газ, который, поднимаясь вверх и проходя сквозь слой раскаленного угля, превращается в оксид углерода. Этот оксид углерода восстанавливает основную часть руды, превращаясь снова в углекислый газ. Однако такая схема не полностью отражает многообразие химических реакций, протекающих в печи. Порядок превращения руды в чугун и распределение температур изображены на рис. 5.2.
Рис. 5.1. Схематическое изображение шахтной печи для получения чугуна (домны).
Рис. 5.2. Схема химических реакций, протекающих по высоте доменной печи.
В нижней части печи, как уже упоминалось, происходит горение кокса по реакции:
< C > + < O2 > = < CO2 >
Здесь угловыми скобками обозначено твердое состояние, фигурными – газообразное.
Проходя вверх далее через слой раскаленного угля, СО2 превращается в оксид углерода:
< CO2 > + < C > = 2
Монооксид углерода является сильным восстановителем и именно он восстанавливает железо из руд. Реакция идет постадийно, что и отображено на рисунке. В результате образуются крупинки твердого железа.
По мере сгорания угля это железо опускается вниз по печи в ее более горячую часть — распар, и здесь при температуре порядка 1200°С плавится при соприкосновении с углем, отчасти растворяя его и образуя заэвтектический чугун с содержанием углерода 4-4,5%. В то время как чистое железо плавится при 1535°С, чугун в точке эвтектики плавится при 1150°С, поэтому капли жидкого чугуна стекают в нижнюю часть горна. Для того, чтобы сэкономить тепловую энергию отходящих газов и возвратить ее в процесс, отходящие газы из домны направляются в т.н. «кауперы», где газы отдают часть тепла. Сначала эти газы направляются в один из кауперов, в то время как через второй продувается воздух для последующей подачи в домну, где он нагревается. Через определенные промежутки времени потоки меняются местами.
Одновременно с восстановлением железа происходят процессы отделения пустой породы от целевого продукта через образование шлака при взаимодействии примесей с флюсовыми добавками. Конечный шлак на 85-95% состоит из SiO2, Al2O3 и СаО; остальное — MgО (2-10%), FeO (0,2-0,6%), MnО (0,3-2%) и 1,5-2,5% серы в виде CaS. Стремятся создать наиболее легкоплавкий шлак, поэтому, в зависимости от типа примесей в используемой руде в шихту добавляют либо кислые (SiО2), либо щелочные компоненты (оксиды кальция и магния).
Для выпуска жидких продуктов плавки используют раздельно чугунные и шлаковые летки.
Поскольку шлак – многокомпонентная система, кроме того, процесс перехода из твердого в жидкое состояние осуществляется в достаточно большом интервале температур, вязкость шлака определяется не только температурой, но и составом шлака, поэтому у каждого типа шихты свои особенности.
Еще одна проблема, которая наблюдается в доменном процессе и которую решают для каждого типа шихты по-разному – это проблема серы. Сера – вредный элемент, ухудшающий качество металла. Она является причиной красноломкости стали и ухудшает качество литейных чугунов, увеличивая вероятность образования раковин в отливках. Ограничения по сере для стали и литейного чугуна весьма серьезны – в этих материалах ее не должно быть более нескольких сотых процента. Вместе с тем, если не принимать каких-либо специальных мер, в чугуне может набраться до 0,9% серы. Поскольку серу легче удалять из руд и чугунов, чем из стали, именно на стадии подготовки компонентов шихты и в доменном производстве эти операции и производятся.
Хотя значительное количество серы удаляется при огневой обработке руд (агломерации и обжиге окатышей), очень много серы вносится в доменную печь с коксом и железорудными материалами в виде сернистого железа (пирита FeS2), барита BaSO4 и гипса CaSO4 * h3O.
Часть серы удаляется при проведении технологических процессов естественным путем через образование газов (SO2, H2S и др.), но это лишь небольшая часть, по оценке для обычного доменного процесса порядка 15%. Поэтому основное внимание обращается на перевод соединений серы, растворяющихся в чугуне, в соединения, в нем не растворяющихся, например, по реакции:
FeS + CaO = CaS + FeO
FeO + C = Fe + CO
FeS +CaO + C = CaS +Fe + CO
Существуют и другие способы десульфуризации, что позволяет в целом решать эту проблему при использовании самых различных руд.
Конечными продуктами доменной плавки являются чугун (целевой продукт) и шлак и доменные газы (побочные продукты производства). Нас в данном случае интересует только чугун, на нем и остановимся.
Чугун представляет собой многокомпонентный сплав железа с углеродом, кремнием, марганцем и серой. В зависимости от назначения чугуна в нем могут содержаться и другие вещества, содержание которых регламентируется соответствующими стандартами.
Основной вид чугуна, производимый в доменном производстве, — это передельный чугун (до 90% от всего выпускаемого чугуна), который затем используют для получения различных видов сталей.
Производство чугуна имеет и самостоятельное значение, поскольку некоторые виды используют для отливок. Для получения чугунных отливок используется и небольшая часть передельного чугуна. Некоторые типы чугунных изделий можно оцинковывать, но об этом мы поговорим позже.
В зависимости от назначения чугуна последний перевозится от доменных печей чугуновозами в жидком виде либо в сталеплавильные цехи, либо на разливочные машины (при выплавке товарного чугуна).
Возможно Вас так же заинтересуют следующие статьи: comments powered by HyperComments
29. Топливо и восстановитель для металлургии железа.
Процессы получения восстановительного газа из жидкого топлива не отличаются от аналогичных процессов с применением газообразного топлива, однако имеют свои особенности. Для восстановительного газа с повышением содержанием СО характерна склонность к образованию сажистого углерода. Еще более благоприятные условия для выделения сажи создаются при применении воздушной конверсии жидких углеводородов, при которой до 30% топлива не газифицируется, что приводитк наличию ввосстановительном газе до 57 г сажистого углерода на 1 м 3 сухого газа.
Помимо содержания в восстановительном газе сажистого углерода, существенным недостатком описанных процессов является также снижение восстановительной способности получаемого газа за счет присутствия в нем значительного количества азота, переходящего из воздуха.
Горючее, употребляемое для доменной плавки, служит не только для нагрева шихты и ее расплавления, но также и как основной химический реагент для восстановительных процессов в печи и науглероживания железа.
Для доменного процесса требуется прочное и неспекающееся твердое топливо. Следует учитывать, что твердое топливо занимает значительный объем доменной печи и большая его часть должна сохраниться твердой, кусковой и прочной вплоть до сжигания у фурм печи, с тем чтобы обеспечить высокую газопроницаемость столба шихтовых материалов. Такое топливо можно лишь частично заменить другим (жидким, газообразным и пылевидным).
К твердому топливу предъявляют основные требования:
1. Высокая теплота сгорания и пирометаллургическая способность.
2. Достаточная прочность и термостойкость, чтобы не образовывалось много мелочи при нагреве топлива и прохождении его через печь.
3. Неспекаемость в условиях доменного процесса.
4. Достаточная чистота по содержанию вредных примесей — серы и фосфора.
Желательно также, чтобы в топливе было немного золы, особенно кремнезема и глинозема, требующих применения флюсов.
Топлива естественных видов не удовлетворяют этим требованиям главным образом вследствие низкой термостойкости и спекаемое. Поэтому для доменной плавки приходится специально изготовлять твердое топливо: кокс или древесный уголь.
30. Получение жидкого металла по схеме «восстановление – плавление».
Разделение низкотемпературной («восстановление») и высокотемпературной («плавление») областей и создание комбинации из двух агрегатов — шахты и горна.
Опыт действующей установки Корекс позволяет определить некоторые условия и перспективы развития направления восстановление — плавление.
Процесс получения жидкого металла с использованием углей и высокой степенью утилизации химического потенциала горновых газов может быть в зависимости от конкретных условий экономически и технологически приемлемым
В отличие от жидкофазного восстановления процесс «восстановление—плавление» обеспечивает возможность получения как передельных, так и литейных чугунов, а также чугунов с повышенным содержанием марганца.
Расход угля на производство 1 т чугуна, по-видимому, не может быть ниже 800—900 кг, причем лимитирующими являются условия восстановления железа в шахтной печи.
Для процесса требуется обязательное обеспечение техническим кислородом в количестве 600- -700 м 3 /т.
Процесс может быть осуществлен лишь при наличии кусковою железорудного сырья. Следовательно, наличие фабрик окускования обязательно.
Наличие двух агрегатов и требования синхронизации их работы создают трудности для нормального функционирования установки получения чугуна.
По сравнению с агрегатом ПЖВ установка Корекс отличается более низкой удельной производительностью.
Плохо просматриваются методы управления процессом (регулирование состава чугуна, температуры в плавильном агрегате и т. д.).
Неясны основные ресурсо-экологические характеристики. Неизвестны коэффициенты распределения элементов между чугуном, шлаком и газом.
Не просматривается роль этого процесса в реализации глобального рециклинга.
Наиболее освоенной схемой процесса восстановление — плавление является вариант шахтная печь — горн, т. е. две части доменной печи, разрезанной по горизонтали, поставленные рядом друг с другом. Это позволяет решить, по существу, лишь одну задачу: замену кокса недефицитным видом твердого топлива. Вторая задача, решаемая процессом жидкофазного восстановления, — использование неокускованной железорудной шихты — не достигается. Процесс Корекс. Обожженные окисленные окатыши или кусковая руда вместе с кусками известняка или доломита (размеры кусков шихты 6—20 мм) сгружаются в первый агрегат — шахтную печь высотой 19 м и внутренним диаметром 5 м. Снизу через фурмы в шахту вдувается газ-восстановитель из второго (плавильного) агрегата при температуре 820 °С. Таким образом, в шахтной печи протекают процессы, аналогичные процессам металлизации в шахтных печах твердофазного восстановления. Отходящий из шахтной печи газ частично используется для охлаждения газа-восстанови теля, выходящего из плавильного агрегата. Время пребывания шихты в шахтной печи 7—9 ч, конечная степень металлизации 93%. Металлизованные окатыши направляются во второй (плавильным) агрегат (аналог горна доменной печи), где в токе кислорода при температуре около 2500 °С сгорает твердое топливо и формируются чугун и шлак. Температура жидких продуктов плавки выше 1500 С. В отличие от процессов жидкофазного восстановления в одном агрегате в установке Корекс в горне происходит активное восстановление кремния, марганца, фосфора, десльфурация чугуна шлаком, науглероживание металла.
Корекс-процесс выплавки жидкого чугуна на основе угля вместо кокса. Данный процесс газифицирует некоксующийся уголь в плавильном реакторе, и газ также используется для производства жидкого чугуна. Газифицированный уголь подается в шахтную печь, где он вступает в реакцию с кислородом железной руды, окатышей или агломерата. После этого полученный чугун подается в плавильный реактор. Состоит из 2-х частей: 1. восстановительная шахта, 2. плавильный агрегат (газификатор). Восстановление до губчатого железа. Потом подаётся шнековым транспортёром в плавильную газификационную камеру. T=1600 C. Состав чугуна: 4,24 С, 0,6 Si, 0,33 S, 0,16 P. Расход угля 1180 кг/т.ч. Подаётся уголь и вдувается кислород.
8. Восстановление оксидов Si, Mn и других элементов в доменной печи
Si присутствует в рудах преимущественно в виде кремнезема (), а в агломератах в виде силикатов железа ()
Сродство Si к очень велико, поэтому он может восстанавливаться только прямым путём
Установлено, что в дом. печи Si восстанавливается при более низкой t-ре, что связано образованием силицидов Fe и присутствием железа.
При высоких t-ах Si восстанавливается также из жидкого шлака углеродом карбида железа
В литейных чугунах Si сод-ся от 1,75-3,75% и в передельных 0,3-1,2% Si.
Mn в рудах находится в виде следующих оксидов ,,
а в агломерате в виде силикатов марганца
Высшие оксиды Mn восстанавливаются до закиси Mn – MnO , газами при t-рах 200-500.
В присутствии углерода Mn образует карбид марганца (), что несколько снижаетt-ру восстановления Mn.
Заметное развитие процесс восстановления Mn получает в присутствии Fe при 1100-1300. Поскольку закись марганца восстанавливается при высокихt-ах, то значительная часть MnO переходит в силикаты.
Восстановление Mn из его силикатов облегчается в присутствии извести
Mn не весь переходит в чугун, часть его в виде оксидов остается в шлаке, а часть улетучивается через колошник.
Восстановление других элементов
Элементы дом. шихты по возрастанию сродства к кислороду располагаются в следующем порядке:
Cu, As, Ni, Fe, P, Zn, Mn, V, Cr, Si, Ti, Al, Mg, Ca
Такие элементы как As, Cu, P подобно железу почти целиком восстанавливаются в дом. печи, и переходят в чугун.
Полностью восстанавливается и Zn, но он возгоняется, переходит в газы и откладывается в порах и швах кирпичной кладки шахты, вызывая её рост и разрывы кожуха печи.
V, Cr восстанавливаются аналогично Mn соответственно на 70-80%, 80-90%.
Ti восстанавливается аналогично Si.
Al, Mg, Ca в дом. печи не восстанавливаются.
9. Загрузка шихты и горение топлива в доменной печи
В современной дом-ой печи время пребывания в ней материалов составляет 4-6 часов, а газов 3-12 сек. Высокие показатели плавки могут быть получены только при хорошем распределении газов по сечению печи. Только в этом случае они отдадут своё физ. тепло и наиболее полно будет использовано их восстановительная способность. Скорость опускания шихтовых материалов составляет 20 – 150 мм в мин. Это происходит в результате образования чугуна и шлака, к-ые периодически выпускают из дом-ой печи, сгорание кокса и плавление шихтовых материалов .
Горение топлива явл-ся одним из основных процессов обеспечивающих высокую t-ру необходимую для введения дом-ой плавки и получение газов восстановителей СО и Н2, а также для освобождение объема, к-ый заполняется вышележащими материалами, способствуя движению шихты в печи сверху в низ. Сгорание углерода топлива и углеводородов природного газа или мазута происходит в близи фурм, расположенных в верхней части горна, через фурмы под давлением 1.5-3 атм. подаётся дутьё нагретое до 1100 — 1300ºС, при этом скорость дутья на выходе из фурмы составляет 150м/сек. При таких параметрах дутья струя обладает большой кинетической энергией и вызывает циркуляцию кокса перед фурмами, что приводит к сгоранию кокса во взвешанном состоянии . Куски кокса, отталкиваясь воздушным путем от фурм, поднимаются в верх, а на них место попадают новее куски кокса раскаленные до 1500ºС, к-ые сгорают в окислительной атмосфере, в результате t-ра газов составляет 1900-2000 ºС.
Вокруг зоны циркуляции располагается область в газовой фазе к-ой содержится СО2. Пространство перед фурмами в к-ом происходит окисление углерода коксом, кислородом дутья и диоксидом углерода называется окислительной зоной. Горение углерода твердого топлива развивается на поверхности контакта кокса и горновых газов с протеканием конечной стадии по реакции:
Поскольку при избытке углерода и наличии высокой t-ры диоксид углерода явл-ся неустойчивым.(14000 ºС)
При вдувании природного газа:
Образуется ≈ в 3 раза < тепла, и в 1,7 раза > продуктов сгорания, что делает невыгодным 100%-ую замену кокса на природный газ.
Расчет термодинамических величин (энтальпии, энтропии, энергии Гиббса) реакций восстановления оксидов железа
Реакция восстановления железа оксида железа (3) водородом
Задача 14.
Вычислите ∆Hº, ∆Sº и ∆Gтºреакции, протекающей по уравнению:
Fe2O3(к) + 3Н2(г) = 2Fe(к) + 3Н2О (г)
Возможна ли реакция восстановления Fe2O3(к) водородом при 500 и 1000ºК?
Решение:
1. Расчет энтальпии реакции
В химической реакции, протекающей по уравнению:
Тепловой эффект реакции (∆Нх.р.), исходя из следствия закона Гесса, равен сумме теплот образования ∆Нобр. продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом коэффициентов перед формулами этих веществ в уравнении реакции.
— теплоты образования простых веществ условно приняты равными нулю;
— теплота образования Н2О (г) равна -241.83 кДж;
— теплота образования Fe2O3(к) равна -822.10 кДж .
Исходя из указанных данных получим:
∆Нх.р.= 3(-241.83) – (-822.10) = -725.49 – (-822.10) = 96.61 кДж.
Ответ: ∆Нх.р.= 96.61 кДж
2. Расчет энтропии реакции
Изменение энтропии продуктов химической реакции, протекающей по уравнению:
Рассчитывается по формуле:
∆S°Fe(к) = 27,2 Дж/(моль . К);
∆S°Н2О (г)) = 188,72 Дж/(моль . К)
∆S° Fe2O3(к) = 89,96 Дж/(моль . К)
∆S° O/H2(г) = 130,59 Дж/(моль . К)
С учетом этих данных рассчитаем изменение энтропии реакции, получим:
∆S°х.р.= 2(27,2) + 3(188,72) – (89,96) + 3(130,59) = 620,56 — 481,73 = 138.83 Дж/(моль . К).
Ответ: ∆S°х.р.= 138.83 Дж/(моль . К)
3. Расчет термического потенциала или энергии Гиббса
Мерой химического сродства (∆G°) является убыль энергии Гиббса (изменение изобарно- термического потенциала или энергии Гиббса).
Убыль энергии Гиббса ∆G°х.р. в химической реакции:
вычисляем по формуле:
∆G°х.р. = ∆Н° — Т . ∆S°
∆G°х.р. = 96,61 – (298 . 0.,3883 = 96,61- 41.37 = +55.24 кДж.
Ответ: ∆G°х.р. = +55.24 кДж
Т.к. ∆G°х.р. > 0, то реакция при стандартных условиях невозможна; при этих условиях пойдет обратная реакция — окисление железа (коррозия).
4. Определение температуры начала реакции восстановления Fe2O3 CO
∆Н = Т . ∆S, отсюда Т = ∆Н/∆S = 96,61/0,13883 = 695.9°К.
5. Расчитаем энергию Гиббса данной реакции при 500°К.
∆G 0 500 = 96,61-(500 . 0,13883) = +27,19 кДж.
Таким образом, ∆G при температуре 500°К составляет +27.19 кДж, т.е. ∆G > 0 и это означает, что реакция при 500°К. невозможна 1 .
6. Расчитаем энергию Гиббса данной реакции при 1000 К
При температуре 1000°К находим ∆G 0 1000 аналогично:
∆G 0 1000 = 96,61 – (1000 . 0,13883 = 96,61 — 138,83 = -42,22 кДж. ∆G 0 1000 = -42,22 кДж.
Так как ∆G 0 1000 < 0, то при температуре 1000°К. реакция возможна 1 .
Реакция восстановления оксида железа (2) оксидом углерода (2)
Задача 15.
Подсчитайте значения ?Н, ?S, ?G рекции: FeO + CO = Fe + CO2, определите, при каких условиях она возможна?
Решение:
∆Н°(FeO) = -264,8 кДж/моль;
∆Н°(CO) = -110,5 кДж/моль;
∆Н°(CO2) = -393,5 кДж/моль;
∆S°(Fe) = 27,15 Дж/(моль К);
∆S°(FeO) = 60,8 Дж/(моль К);
∆S°(CO) = 197,5 Дж/(моль К);
∆S°(CO2) = 213,7 Дж/(моль К);
∆G°(FeO) = -244,3 кДж/моль;
∆G°(CO) = -137,1 кДж/моль;
∆G°(CO2) = -394,4 кДж/моль.
1. Рассчитаем ?Н реакции, получим:
Расссчитывается по формуле:
∆Н°х.р. = ∆Н°(СO2) — [∆Н°(FeO) + ∆Н°(CeO)] = -393,5 — [(-264,8) + (-110,5)] = -393,5 — (-375,3) = -18,2 кДж/моль.
Так как ∆Н°х.р. < 0 то данная реакция сопровождается выделение теплоты в окружающую среду, значит данная реакция экзотермическая. Экзотермические реакции — это химические реакции, сопровождающиеся выделением теплоты в окружающую среду.
2. Рассчитать ∆S° реакции,получим:
Расссчитывается по формуле:
∆S°х.р. = [∆S°(CO2) + ∆S°(Fe)] — [∆S°(FeO) + ∆S°(CO)] = (213,7 + 27,15) — (60,8 + 197,5) = -17,45 Дж/(моль К).
Отрицательное значение изменения энтропии (убывание энтропии) свидетельствует об увеличении упорядоченности данной системы и, действительно, хотя в реакции объем газов не изменяется, но Fe значительно более устойчив чем FeO.
3. Рассчитаем G° реакции, получим:
Расссчитывается по формуле:
Расчеты показали, что ∆G°х.р. < 0, это означает возможность протекания данного процесса при стандартных условиях.
1 Примечание:
Поскольку изначальная температура, при которой начинается реакция по уравнению:
Fe2O3(к) + 3Н2(г) = 2Fe(к) + 3Н2О (г), из вышеприведенных расчетов равна 695.9°К, то путем сравнения температур можно сразу определить, что при температуре 500°К реакция не пойдет, а при температуре выше 695.9, т.е. при 1000°К пойдет с получением продуктов согласно уравнению.
- Назад
- Вперёд
- Вы здесь:
- Главная
- Задачи
- Физическая химия
- Энтальпия образования бензола и озона. Задачи 4 — 5
Источник http://www.conatem.ru/tehnologiya_metallov/razlozhenie-plavilnyx-materialov-v-domennoj-pechi.html
Источник http://termopaneli59.ru/dom/sxema-vosstanovleniya-zheleza-v-domennoj-pechi-5-stal-sushhnost-processa-polucheniya-stali-metodom-pryamogo-vosstanovleniya-zheleza-iz-rudy-privedite-primery-vosstanovitelnyx-ximicheskix.html
Источник http://buzani.ru/zadachi/fizicheskaya-khimiya/1582-reaktsii-vosstanovleniya-oksidov-zheleza-zadachi-14-15