Перейти к содержанию

Легкие цветные металлы алюминий

 

Содержание

Алюминий

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Алюминий — свойства, харакретистики, обзорная статья

Алюминий (Aluminium) имеет несчастливый 13 номер в периодической таблице Менделеева. Однако на счастливую судьбу металла это не повлияло.

Алюминий элемент

Этот легкий серебристый металл послушно поддается механической обработке и литью, имеет большую тягучесть.

Редкая способность — быстро образовывать окисные пленки на поверхности чистого металла. Но эти пленки не слишком хорошо защищают от коррозии. Надежнее химическое и электрохимическое оксидирование. Формула оксидной пленки А12Оз.

Химические и физические характеристики алюминия:

  • плотность 2,7 г/см3;
  • температура плавления 660°С;
  • кипит цветной металл при температуре 2518°С;
  • строение кристаллической решетки гранецентрированное, кубическое;
  • степени окисления 0; +3.

С помощью металлического алюминия (его взаимодействия с оксидами металлов) получают трудновосстанавливаемые металлы. Этот метод называется алюминотермия.

Алюминий имеет один стабильный изотоп, 27Al.

Микроструктура алюминия

Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм

Неправда, но хорошо придумано

В печатных изданиях, а сейчас и в интернете гуляет история о крестьянине, который вел «крамольные беседы о полете на Луну». Крестьянина (или мещанина), по одним сведениям Петрова, по другим Никифорова, сослали в киргизский поселок Байконур» Якобы известие о факте напечатано был в Московских губернских новостях», в 1848 году. Сейчас, когда с космодрома Байконура ушли в космос не один десяток спутников и станций, этот факт выглядит пророческим и мистическим.

Вот только это неправда. Дотошные читатели перерыли подшивки этой газеты, и заметки такой не обнаружили. Это просто красивая легенда.

Алюминиевые сплавы, плюсы и минусы

Легкие цветные металлы алюминий
Кодовый символ, указывающий, что алюминий может быть вторично переработан

Чистый алюминий в строительных конструкциях применять нецелесообразно. Прочностные характеристики у него «так себе». А вот алюминиевые сплавы — другое дело. Сейчас известны и используются около 60 сплавов. Можно выбрать для любых нужд, на любой вкус.

Классификация сплавов проводится по составу, свойствам, по способности к термической обработке.

Добавки меди, магния и марганца, цинка существенно улучшают характеристики сплава в сравнении с чистым металлом. Этими металлами чаще всего легируют алюминий. Титан, литий, ванадий, церий, скандий, некоторые редкоземельные элементы для легирования применяются реже, но свойства этих сплавов также востребованы в промышленности.

Дюраль

Дюралюмины — сплавы алюминия с медью (4%), магнием (0,5%) и небольшого количества железа, марганца, кремния. Недостаток дюралей — подверженность коррозии; с ней справляются, применяя анодирование, плакировку, авиационную грунтовку, окрашивание.

Востребованные свойства сплава: хорошая статическая и усталостная прочность, высокая вязкость разрушения.

Широко применяется в деталях и конструкциях, где большую роль играет масса изделия. Главные потребители сплава — авиация, судостроение, космонавтика.

Для любознательных: дюралюминий придумали в 1909 году. «Папа» сплава — А. Вильм.

Сплав 7075

Разрабатывался компанией Sumitomo Metal Corporation (Япония) в строжайшей тайне.

Представляет соединение алюминия с цинком (до 6%), магния (2-2,5%), меди (до 1,5%). В тот же сплав добавлены титан, кремний, марганец, хром, железо. Добавки эти составляют не более 0,5%, но свой вклад в свойства сплава вносят.

Сплав сравним по прочности со сталью, но легче ее в три раза.

  • 7075-0;
  • 7075-06;
  • 7075-Т651;
  • 7075-Т7;
  • 7075-АСР.

Сплавы устойчивы к коррозии, хорошо полируются.

Алюминий металл

Применяются в производстве винтовок для армии и граждан. Промышленности автомобильная, авиационная, морская активно используют сплав. Его минус — достаточно высокая цена.

Сплавов разных много

В России довольно много сплавов с разными свойствами:

  • D1, D16, 1161, 1163 — алюминий, магний, медь;
  • АМГ1 — АМГ6, сплав алюминия и магния;
  • AD31, AD33, AD35, AB — алюминий, кремний, магний. Список легко продолжить.

Модули упругости алюминия и коэффициент Пуассона

Наименование материала Модуль Юнга, кГ/мм2 Модуль сдвига, кГ/мм2 Коэффициент Пуассона
Алюминиевая бронза, литье 10500 4200
Алюминиевая проволока тянутая 7000
Алюминий катаный 6900 2600-2700 0,32-0,36

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Бокситы Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3) — гидрат оксида алюминия.

Легкие цветные металлы алюминий

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Легкие цветные металлы алюминий

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии:

+13Al 1s22s22p63s23p1 1s Легкие цветные металлы алюминий
2s Легкие цветные металлы алюминий
2p Легкие цветные металлы алюминий
3s Легкие цветные металлы алюминий
3p Легкие цветные металлы алюминий

Электронная конфигурация алюминия в возбужденном состоянии:

+13Al* 1s22s22p63s13p2 1s Легкие цветные металлы алюминий
2s Легкие цветные металлы алюминий
2p Легкие цветные металлы алюминий
3s Легкие цветные металлы алюминий
3p Легкие цветные металлы алюминий

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами. При этом образуется белый аморфный осадокгидроксида алюминия.

Например, хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Легкие цветные металлы алюминий

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината: Легкие цветные металлы алюминий

Al(OH)3 + NaOH = Na[Al(OH)4]

Обратите внимание, если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также выпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O= Al(OH)3 ↓ + 3NH4Cl

Al3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4+

Видеоопытвзаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Отражение света алюминием

Числа, приведенные в таблице, показывают, какая доля света в %, падающего перпендикулярно к поверхности, отражается от нее.

Наименование волн Длина волны Отражение света, %
Ультрафиолетовые 1880 25
2000 31
2510 53
3050 64
3570 70
Видимые 5000
6000
7000
Инфакрасные 8000
10000 74
50000 94
100000 97

Соли алюминия

Нитрат и сульфат алюминия

Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV) и кислород:

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия, сернистый газ и кислород:

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например, тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:

Na[Al(OH)4] разбиваем на NaOH и Al(OH)3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют скислотными оксидами.

Например, гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na[Al(OH)4] + CO2 → Al(OH)3↓ + NaHCO3

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

K[Al(OH)4] + CO2 → Al(OH)3 + KHCO3

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO2:

Na[Al(OH)4] + SO2 → Al(OH)3↓ + NaHSO3

K[Al(OH)4] + SO2 → Al(OH)3 + KHSO3

А вот под действиемизбытка сильной кислотыосадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например, с соляной кислотой:

Na[Al(OH)4] + 4HCl(избыток) → NaCl + AlCl3 + 4H2O

Правда, под действием небольшого количества (недостатка) сильной кислотыосадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Na[Al(OH)4] + НCl(недостаток) → Al(OH)3↓ + NaCl + H2O

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Na[Al(OH)4] + HNO3(недостаток) → Al(OH)3↓ + NaNO3 + H2O

Комплекс разрушается при взаимодействии схлорной водой(водным раствором хлора) Cl2:

2Na[Al(OH)4] + Cl2 → 2Al(OH)3↓ + NaCl + NaClO + H2O

При этом хлор диспропорционирует.

Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:

AlCl3 + 3Na[Al(OH)4] → 4Al(OH)3↓ + 3NaCl

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Na[Al(OH)4] → NaAlO2 + 2H2O↑

K[Al(OH)4] → KAlO2 + 2H2O

Гидролиз солей алюминия

Растворимые соли алюминия и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Al3+ + H2O = AlOH2+ + H+

II ступень: AlOH2+ + H2O = Al(OH)2+ + H+

III ступень: Al(OH)2+ + H2O = Al(OH)3 + H+

Однако сульфиды, сульфиты, карбонаты алюминия и их кислыесоли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Al2(SO4)3 + 6NaHSO3 → 2Al(OH)3 + 6SO2 + 3Na2SO4

2AlBr3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + CO2↑ + 6NaBr

2Al(NO3)3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + 6NaNO3 + 3CO2↑

2AlCl3 + 3Na2CO3 + 3H2O → 2Al(OH)3↓ + 6NaCl + 3CO2↑

Al2(SO4)3 + 3K2CO3 + 3H2O → 2Al(OH)3↓ + 3CO2↑ + 3K2SO4

2AlCl3 + 3Na2S + 6H2O → 2Al(OH)3 + 3H2S↑ + 6NaCl

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Al2O3 + Na2O → 2NaAlO2

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы разделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO2 разбиваем на Na2O и Al2O3

Тогда нам станет очевидно, что алюминаты реагируют скислотами с образованием солей алюминия:

KAlO2 + 4HCl → KCl + AlCl3 + 2H2O

NaAlO2 + 4HCl → AlCl3 + NaCl + 2H2O

NaAlO2 + 4HNO3 → Al(NO3)3 + NaNO3 + 2H2O

2NaAlO2 + 4H2SO4 → Al2(SO4)3 + Na2SO4 + 4H2O

Под действием избытка воды алюминаты переходят в комплексные соли:

KAlO2 + H2O = K[Al(OH)4]

NaAlO2 + 2H2O = Na[Al(OH)4]

Бинарные соединения

Сульфид алюминия под действием азотной кислоты окисляется до сульфата:

Al2 S3 + 8HNO3 → Al2(SO4)3 + 8NO2 + 4H2O

либо до серной кислоты (под действием горячей концентрированной кислоты):

Al2 S3 + 30HNO3(конц. гор.) → 2Al(NO3)3 + 24NO2 + 3H2SO4 + 12H2O

Сульфид алюминия разлагается водой:

Al2S3 + 6H2O → 2Al(OH)3↓ + 3H2S↑

Карбид алюминия также разлагается водой при нагревании на гидроксид алюминия и метан:

Al4C3 + 12H2O → 4Al(OH)3 + 3CH4

Нитрид алюминия разлагается под действием минеральных кислот на соли алюминия и аммония:

AlN + 4HCl → AlCl3 + NH4Cl

Также нитрид алюминия разлагается под действием воды:

AlN + 3H2O → Al(OH)3↓ + NH3

Структура

Кристаллическая структура алюминия

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596×10-10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10-10 м, а атомный объем 9,999×10-6 м3/г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки. Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10-5 см), но прочной пленкой оксида алюминия А1203, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

Свойства

Самородный алюминий

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона.

Запасы и добыча

Кусочки алюминия

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.
Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Происхождение

Алюминий с байеритом

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Применение

Изделие из алюминия

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий (англ. Aluminium) — Al

Молекулярный вес 26.98 г/моль
Происхождение названия от латинского alumen
IMA статус утверждён в 1978

Классификация

Hey’s CIM Ref1.21

Strunz (8-ое издание) 1/A.03-05
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.22.1
Dana (8-ое издание) 1.1.1.5

Оптические свойства

Тип изотропный
Люминесценция в ультрафиолетовом излучении не флюоресцентный
Магнетизм парамагнетик

Кристаллографические свойства

Точечная группа (4/m 3 2/m) — изометричная гексаоктаэдральная
Пространственная группа F m3m, P m3m
Сингония кубическая
Параметры ячейки a = 4.04Å

Оксид алюминия Al2O3

Оксид алюминия Al2O3, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные в красный или синий цвет, представляют собой драгоценные камни — рубин и сапфир. В настоящее время рубины получают искусственно, сплавляя с глиноземом в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов — лазеров, создающих направленный пучек монохроматического излучения.

Корунд и его мелкозернистая разновидность, содержащая большое количество примесей — наждак, применяются как абразивные материалы.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Минералы, месторождения…а самородный алюминий?

Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.

Производство алюминия в миллионах тонн

Производство алюминия в миллионах тонн

Минералов, содержащих алюминий, много:

  • бокситы;
  • глиноземы;
  • полевые шпаты;
  • нефелины;
  • корунды.

Так что добыча алюминиевого сырья не составляет большого труда.

Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.

Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.

Происхождением такой металл из самых глубин нашей планеты.

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Интересно: до открытия промышленного способа получения алюминия он был редкостью и стоил дороже золота. Нашего великого химика, Д.И. Менделеева, британцы почтили подарком. Это были аналитические весы (вещь, незаменимая для химика), у которых чашечки изготовили из золота и алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Применение алюминия

Применение алюминия

На современном этапе развития дозвуковой и сверхзвуковой авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении.

В авиации США широко применяются сплавы серии 2ххх, Зххх, 5ххх, 6ххх и 7ххх. Серия 2ххх рекомендована для работы при высоких рабочих температурах и с повышенными значениями коэффициента вязкости разрушения. Сплавы серии 7ххх — для работы при более низких температурах значительно нагруженных деталей и для деталей с высокой сопротивляемостью к коррозии под напряжением. Для малонагруженных узлов применяются сплавы серии Зххх, 5ххх и 6xxx. Они же используются в гидро-, масло-и топливных системах.

В России при изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего сплавного набора элементов планера самолета (фюзеляж, крыло, киль и др.). Сплав 1420, принадлежащий системе Al-Zn-Mg, используют при конструировании сварного фюзеляжа пассажирского самолета. При изготовлении гидросамолетов предусмотрено применение свариваемых коррозионностойких магнолиевых сплавов (AМг5, АМг6) и сплавов Al-Zn-Mg (1915, В92, 1420).

Гражданский самолет

Рисунок 1 – Гражданский самолет

Бесспорное преимущество имеется у свариваемых алюминиевых сплавов при создании объектов космической техники. Высокие значения удельной прочности, удельной жесткости материала позволили обеспечить изготовление баков, межбаковых и носовых частей ракеты с высокой про-дольной устойчивостью. К достоинствам алюминиевых сплавов (2219 и др.) следует отнести их работоспособность при криогенных температурах в контакте с жидким кислородом, водородом и гелием. У этих сплавов происходит так называемое криогенное упрочнение, т.е. прочность и пластичность параллельно растут с понижением температуры.

Сплав 1460 принадлежит системе Al-Cu-Li и является более перспективным для проектирования и изготовления баковых конструкций применительно к криогенному типу топлива – сжатому кислороду, водороду или природному газу.

Судостроение

Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Основное преимущество при внедрении алюминия и его сплавов по сравнению со сталью – снижение массы судов, которая может достигать 50 – 60 %. В результате представляется возможность повысить грузоподъемность судна или улучшить его тактико-технические характеристики (маневренность, скорость и т.д.).

Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов. Имеет место изготовление рыболовецких баркасов из сплава АМг5 (обшивка).

Широкое применение в судостроении США находят свариваемые сплавы серии 5ххх и 6ххх. Там, где необходима высокая прочность (500 МПа), используются полуфабрикаты из сплавов серии 2xxx и 7ххх.

Железнодорожный транспорт

Тяжелые условия эксплуатации подвижного состава железной дороги (длительный срок службы и способность выдерживать ударные нагрузки) выдвигают особые требования к конструкционным материалам.

Товарный поезд

Рисунок 2 – Товарный поезд

Основные характеристики алюминия и его сплавов, раскрывающие целесообразность применения их в железнодорожном транспорте, высокая удельная прочность, небольшая сила инерции, коррозионная стойкость. Внедрение алюминиевых сплавов при изготовлении сварных емкостей повышает их долговечность при перевозке ряда продуктов химической и нефтехимической промышленности.

Алюминий и его сплавы используются при изготовлении кузова и рамы вагона. Для вагона рекомендованы свариваемые сплавы средней прочности марок АМг3, AMr5, Амг6 и 1915. Перспективными сплавами для рефрижераторных вагонов являются алюминиевые сплавы. В зависимости от продуктов химической промышленности выбирается марка свариваемого материала для котлов цистерны.

В США из свариваемых сплавов серии 6ххх, серии 5ххх и сплава 7005 изготавливают подвижной состав с получением оптимальных прочностных характеристик и высокой коррозионной стойкости сварных элементов.

Автомобильный транспорт

Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала.

Автомобиль

Рисунок 3 – Автомобиль

Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.

При изготовлении элементов каркаса, обшивки кузова полуприцепа автофургона, рефрижератора, скотовоза и т.п. перспективным материалом являются алюминиевые сплавы АД31, 1915 (прессованные профили) и сплавы АМг2, АМг5 (лист).

Находят применение алюминиевые сплавы АМц, АМгЗ и 1915 при изготовлении отдельных узлов легкового автомобиля (навесные детали, бамперы, радиаторы охлаждения, отопители).

В автомобилестроении США широко используются алюминиевые свариваемые сплавы серии Зххх, 5ххх и 6ххх.

Из прессованных полуфабрикатов сплавов 2014 и 6061 изготовляют балки, рамы тяжелых грузовых автомобилей. Панели и отдельные элементы из сплава 5052 поступают на изготовление кабины. В качестве обшивочного материала кузова грузовика используют лист из сплавов 5052, 6061, 2024, 3003 и 5154. Стойки кузова выполняются из прессованных полуфабрикатов сплавов 6061 и 6063. Магналиевые сплавы серии 5ххх (5052, 5086, 5154 и 5454) являются основным материалом при изготовлении автоцистерн.

Строительство

Перспективность применения алюминиевых сплавов в строительных конструкциях подтверждается технико-экономическими расчетами и многолетней мировой практикой в области сооружения различных строительных объектов.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.). В зависимости от назначения строительных алюминиевых конструкций рекомендуются различные марки сплавов: АД1, АМц, АМг2, АД31, 1915 и др.

Здание со светопрозрачными конструкциями из алюминия

Рисунок 4 – Здание со светопрозрачными конструкциями из алюминия

Опыт, накопленный в США, подтверждает целесообразность использования алюминиевых сплавов в строительных конструкциях. На них расходуется больше алюминия, чем в любой другой отрасли промышленности. При этом предпочтение отдается внедрению свариваемых сплавов серии Зххх, 5ххх и 6ххх.

Нефтяная и химическая промышленность

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Нефтяная вышка

Рисунок 5 – Нефтяная вышка

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от – 196 до +150 °С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 [3].

Электрика

Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.

В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.

Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60 % от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.

Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) – сплав алюминия (основа) с медью (Cu: 2,2 – 5,2%), магнием (Mg: 0,2 – 2,7 %) марганцем(Mn: 0,2 – 1 %). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом длZ авиационного и транспортного машиностроения.

Дюралюминий листовой

Рисунок 6 – Дюралюминий листовой

Силумин

Силумин – легкие литейные сплавы алюминия (основа) с кремнием (Si: 4 – 13 %), иногда до 23 % и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Силумин Магналии
Рисунок 7 – Силумин Рисунок 8 – Магналии

Магналии

Магналии – сплавы алюминия (основа) с магнием (Mg: 1 – 13 %) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).

По широте применения сплавы алюминия занимают второе место после стали и чугуна [4].

Применение в быту

Исследуя влияние алюминия на различные пищевые продукты, ученые установили, что при контакте пищи с алюминием не разрушаются витамины. Это открытие послужило причиной широкого применения алюминия в пищевой промышленности, в виде посуды из алюминия, а также в косметике и бытовой химии. Из алюминия изготавливают разнообразную аппаратуру, предназначенную для переработки пищевых продуктов в сахарной, кондитерской, маслобойной и других отраслях промышленности.

Алюминивая посудаi

Рисунок 9 – Алюминивая посуда

Алюминиевых изделий изобилие, как на кухне крупного предприятия общественного питания, так и на домашней кухне: мясорубки, вилки, ложки, чашки, тазы, посуда из алюминия и т. д. Алюминиевая фольга — прекрасный упаковочный материал, хорошо сохраняющий различные продукты. В обертку из алюминиевой фольги упаковываются кулинарный жир, маргарин, мороженое, конфеты и многое другое, поэтому его еще именуют — пищевой алюминий. В алюминиевые тубы традиционно упаковывается зубная паста. Чтобы было удобно пользоваться, некоторые продукты, такие, например, как плавленый сыр, упаковывают в тубы с отвинчивающейся крышкой. В таких тубах берут с собой в космос продукты питания космонавты. Все чаще тонкий листовой пищевой алюминий применяется вместо жести при производстве консервных банок, а также все больше посуды из алюминия изготавливают производители [5].

Фармацевтика

Говоря об универсальности алюминия, нельзя обойти вниманием важный факт: металл, из которого делают посуду и самолеты, широко применяется для лечения и предупреждения тяжелых болезней и одобрен для этих целей Всемирной организацией здравоохранения. Конечно, речь идет не об алюминии в чистом виде, а о его соединениях.

В 1926 году было открыто, что осажденный квасцами дифтерийный токсоид (обезвреженный бактериальный токсин) гораздо лучше стимулирует выработку антител, чем он же в чистом виде. С тех пор для усиления действия вакцин чаще всего используют алюминиевые соли, поскольку они считаются безвредными для человека.

Именно на основе алюминия производят наиболее эффективные антациды. Гидроокись алюминия, хорошо нейтрализующая кислоту, нужна для лечения язвенных болезней, диспепсии, раздражения желудка. Для этих же целей подходит фосфат алюминия.

Лекарства Дезодоранты
Рисунок 10 — Лекарства Рисунок 11 — Дезодоранты

Но даже тем, у кого прекрасное здоровье, пригодится содержащее алюминий средство, которое продается в любое аптеке, да и не только. Речь идет о дезодоранте-антиперспиранте. Еще древние греки и римляне использовали квасцы для подавления секреции. Обычными квасцами пользовались и наши бабушки. В первые фабричные средства от запаха пота добавляли хлорид алюминия, а основным агентом современных средств является хлоргидрат алюминия. Кстати, на чем основан эффект их действия, до сих пор точно не известно [6].

Источник https://cu-prum.ru/alyuminij1.html

Источник https://tutsvarka.ru/raznoe/alyuminij-svojstva-harakretistiki-obzornaya-statya

Источник https://metalspace.ru/education-career/osnovy-metallurgii/metallurgiya-alyuminiya/680-primenenie-alyuminiya.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

X