Перейти к содержанию

Преимущества и недостатки алюминия

Преимущества и недостатки алюминия

Этот металл, из которого изготавливают разнообразные виды кабельной продукции, обладает рядом достоинств, присущих только ему. Поэтому получил такое широкое применение, и не только в электрике.

Самое главное достоинство, которое есть у этого металла, – его небольшой вес. Это – неоспоримое преимущество, которое делает возможной прокладку линий электропередач (ЛЭП). Расстояние между опорами довольно большое. Поэтому можно между ними протянуть лёгкий кабель с алюминиевыми жилами. Малый вес позволяет легче и быстрее прокладывать разные виды электропроводки – снаружи и внутри помещений, под землёй и по воздуху. Стоимость алюминиевых проводов намного ниже, чем кабелей, изготовленных из других металлов. Это объясняется большой распространённостью, а также относительно невысокой стоимостью технологии производства. Эти два фактора сыграли решающую роль при выборе материала для проводки электричества в старых постройках. К тому же в то время нагрузка на электросети была гораздо ниже, чем в настоящее время. Устойчивость к коррозии – ещё одна немаловажная причина выбора. На открытом воздухе при контакте с кислородом алюминиевые провода сразу же окисляются. На поверхности образуется тонкая и прочная плёнка, предотвращающая дальнейшую коррозию металла. Но это качество является и недостатком – алюминиевый окисел является плохим проводником.

Достоинства и недостатки алюминиевой электропроводки

Преимущества алюминия.

Легкий и прочный.

Одной из наиболее заметных особенностей алюминия является его легкость, поскольку по сравнению со Сталью его плотность ниже, что дает ему еще один диапазон возможностей. Несмотря на это свойство, оно все еще довольно прочное, поэтому ламинаты, изготовленные из этого материала, довольно распространены, так как они не будут тяжелыми, но если они будут прочными.

Дешевый.

Одна из причин, по которой предпочтение отдается алюминию, заключается в том, что его цена обычно дешевле, чем у других материалов. Например, в случае окон, где вы хотите, чтобы они соответствовали остальной части дома, это дешевле, чем использование дерева.

Ковкость.

Он более податливый, в отличие от других материалов, которые не могут принимать более сложные формы без разрушения. Это позволяет создавать более эластичные объекты, которые могут оказать на них некоторое давление, которое другие металлы не выдержат. Кроме того, именно по этой причине бумага может быть изготовлена из этого, так как ламинаты, образовавшиеся из-за этого свойства, могут быть очень тонкими.

По теме: Преимущества и недостатки светодиодных ламп освещения

Процессы производства алюминия, как правило, требуют много энергии, так как также учитываются методы экстракции, но для повторного использования металла из банок, окон, ламинатов или других других вещей требуется только плавление и обработка, что дает нам экономию энергии и продукт того же качества.

Естественная коррозионная стойкость.

При контакте с кислородом он образует слой оксида на его поверхности, который естественным образом предотвращает коррозию, которая может быть под воздействием атмосферных воздействий или контакта с химическими веществами. Это дает вам очень длительный срок службы, который может быть увеличен с дополнительной защитой.

Главные недостатки алюминиевых проводов

Как и любому материалу, алюминию присущи свои отрицательные качества.

Места соединений проводников, изготовленных из алюминия, являются достаточно проблемными для прохождения тока. Это происходит из-за плёнки окисла, образующейся на его поверхности. Обладая высоким сопротивлением, эта плёнка способствует нагреву проводов. Особенно это опасно для кабелей, имеющих небольшое сечение. При нагреве алюминий имеет свойство расширяться, менять свою форму и пластичность. После остывания он возвращается в исходное состояние. Такие колебания приводят к тому, что в местах соединения проводников контакт со временем может нарушиться. Зазор между ними может явиться причиной искрения, часто приводящего к пожарам. По статистике, алюминиевая проводка является намного более пожароопасной, чем другие виды электропроводки. Свойства алюминиевой кристаллической структуры приводят к тому, что металл подвержен растяжению. Такое качество плохо сказывается в местах соединений проводов, выполненных методом скрутки. Высокое удельное сопротивление (0,027 Ом*мм2/м) не позволяет конкурировать алюминию с такими металлами, как медь (0,018 Ом*мм2/м). То есть он оказывает в полтора раза большее сопротивление прохождению электрического тока. Поэтому для одинаковой с медью пропускной способности кабели из алюминия должны иметь большее сечение. Алюминию присуще такое негативное качество, как ломкость. Особенно это проявляется со временем, когда срок службы электрической алюминиевой проводки близок или превышает допустимый – 25 лет. Уже нельзя будет согнуть жилу с небольшим радиусом изгиба – она просто обломается. Поэтому рекомендуется по истечении срока службы менять алюминиевую электропроводку на другие её виды.

Согласно требованиям ПУЭ (правил устройства электроустановок), а также вышеописанным недостаткам, для проводки в квартирах и других помещениях алюминиевые кабели должны иметь сечение, равное или больше 16 мм2. Алюминиевая проводка должна соединяться болтовыми соединителями, зажимами с пружинными клеммами или клеммными колодками. Существуют специальные смазки, предотвращающие образование оксидной плёнки на поверхности проводников. Перед соединением желательно покрыть проводники такой смазкой. Таким образом, переходное сопротивление будет небольшим.

Химические свойства алюминия

В обычных условиях алюминий проявляет степень окисления +3, при высоких температурах +1, редко +2.

Алюминий обладает большим сродством к кислороду, образуя окись Al2О3; в порошкообразном состоянии при накаливании в токе кислорода он сгорает, развивая температуру около 3000°С. Эту особенность алюминия используют в алюминотермии для восстановления некоторых металлов из их окислов. При высокой температуре алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al4С3 и сульфид Al2S3. С водородом алюминий не взаимодействует; гидрид (AlH3)х получают косвенным путём. Алюминий легко растворяется в щелочах с выделением водорода и образованием алюминатов. Большинство солей алюминия хорошо растворимо в воде.

Сравнение алюминиевых и медных проводов

Какие виды кабелей более предпочтительны – медные или алюминиевые? Однозначно ответить на этот вопрос нельзя. Есть свойства, которые являются определяющими для применения меди. По некоторым показателям алюминий также имеет преимущество. Всё зависит от конкретного места и способа проводки.

Такие свойства алюминиевых проводов, как небольшой вес и стоимость, являются определяющими при строительстве ЛЭП. Малый вес позволяет быстрее и легче управляться с большими бухтами кабеля. Его проще монтировать между опорами, понадобится меньше крепящего оборудования. В последнее время большую популярность приобрели алюминиевые кабели СИП (Самонесущие Изолированные Провода). Они пришли на замену оголённым проводам, имея перед ними существенные преимущества.

Для применения внутри помещений следует рассмотреть, по каким критериям имеет преимущества тот или иной металл.

Допустимый срок эксплуатации. Алюминиевая проводка может служить от 15 до 30 лет, в зависимости от изоляции. После этого вследствие изменения свойств алюминия её необходимо заменить. У меди в этом плане преимущества нет. Сегодня бытует ошибочное мнение, что медная проводка может служить почти в два раза дольше алюминиевой. На самом деле у обоих металлов срок службы приблизительно одинаков, что подтверждается в специализированных справочниках. Прочность. По этому показателю медь значительно опережает своего конкурента. Если медный провод может без повреждения выдержать до 80 перегибов, то алюминиевый – всего 12. Но если вести скрытую проводку, то ресурса на изгиб достаточно у обоих металлов. Подверженность окислительным процессам. Оба материала окисляются, только с алюминием этот процесс происходит гораздо быстрее, но также быстро и заканчивается. Образовавшаяся плёнка не даёт коррозии проникать глубже, но обладает низким удельным сопротивлением. Плёночный слой меди своих токопроводящих свойств не теряет. Удельная пропускная способность. Здесь превалирует медь с внушительным перевесом. Причина описана выше. Стоимость. По этому показателю алюминиевые провода побеждают со значительным отрывом. Их цена в два, а то и в три раза ниже медных. Но это достижение не так велико, как кажется. Чтобы пропустить, например, ток 27 Ампер, потребуется медный провод сечением 2,5 мм2. Эту же задачу сможет решить проводник из алюминия сечением не менее 4 мм2. Вес. Медь тяжелее алюминия – это одна из причин, почему медные провода не применяют при сооружении линий электропередач.

Следует помнить, что соединять скруткой провод одножильный алюминиевый с медным нельзя. Причина – разное удельное сопротивление, степень расширения при нагреве, а также другие физические параметры. Скруткой можно соединять только однородные металлы, но наилучшее соединение – только с помощью клемм.

Достоинства и недостатки алюминиевой электропроводки

Конструкционные свойства алюминия

Алюминиевые сплавы как конструкционные материалы обладают рядом преимуществ, которые дают им возможность конкурировать со сталью в некоторых видах строительных конструкций. Эти преимущества обеспечиваются физическими свойствами алюминиевых сплавов, а также процессом производства алюминиевых изделий, в первую очередь, экструзией алюминия.

При поиске областей применения алюминия в строительстве следует учитывать следующие особенности свойств алюминиевых сплавов как конструкционных материалов [1]:

1) Алюминиевые сплавы представляют собой большое семейство конструкционных материалов. Прочностные свойства некоторых из них сравнимы с механическими свойствами малоуглеродистых сталей. Смотрите подробнее Строительные алюминиевые сплавы.

2) Модуль упругости алюминия и его сплавов приблизительно в три раза меньше, чем у сталей (рисунок 1).

3) Сразу за упругим участком кривой растяжения алюминиевые сплавы имеют участок деформационного упрочнения без площадки текучести (в отличие от сталей) (рисунок 1).

4) Относительное удлинение алюминиевых сплавов при растяжении составляет от 8 до 12 %, что ниже, чем у углеродистых сталей (выше 20 %) (рисунок 1).

5) Из-за низкого модуля упругости элементы из алюминиевых сплавов являются менее устойчивыми к сжимающим нагрузкам, чем стальные.

6) Конструкции из алюминиевых сплавов более чувствительны к изменениям температуры, чем стальные, так как коэффициент термического расширения алюминия приблизительно в два раза выше, чем у сталей.

7) Остаточные напряжения, которые возникают в результате термических деформаций на 30 % ниже, чем в стальных конструкциях. Это связано с тем, что эти остаточные напряжения пропорциональны произведению коэффициента термического расширения и модуля упругости (α · Е).

8)Сопротивление коррозии многих алюминиевых сплавов дает возможность применять их без дополнительной защиты от коррозии даже в агрессивных средах. Смотрите подробнее Коррозия строительного алюминия

9) Малый вес алюминиевых сплавов дает преимущества в снижении веса конструкций по сравнению со сталью. Степень этого преимущества частично снижается из-за необходимости компенсации более низкого модуля упругости алюминия.

10) Сам по себе алюминий не склонен к хрупкому разрушению, однако для алюминиевых конструкций в целом этой проблеме нужно уделять особое внимание.

11) Процесс экструзии алюминия дает возможность изготавливать профили с поперечным сечением, которое обеспечивает им максимальную жесткость и функциональность (рисунок 2).

12) Для крепления алюминиевых элементов применяют болтовые и заклепочные соединения, а также сварку.

Преимущества и недостатки алюминия

Рисунок 1 — Сравнение типичных кривых растяжения алюминиевых сплавов и малоуглеродистых сталей [1].

Преимущества и недостатки алюминия

Рисунок 2 — Типичные прессованные алюминиевые профили [1]

Разновидности алюминиевой кабельно-проводниковой продукции

Все современные изделия, предназначенные для передачи электроэнергии на расстояние, независимо от применяемых металлов и их сплавов, имеют три разновидности. Человек неискушённый обычно думает, что провода, кабели и шнуры – это одно и тоже. Их можно считать синонимами, но есть определённые отличия.

Провода. Представляют собой конструкцию из одной и более алюминиевых жил, покрытых изоляцией. Все изолированные проводники покрыты наружной оболочкой. Эта оболочка может быть разной, в зависимости от предназначения, условий эксплуатации и прокладки. Широко распространены голые, без изоляции, провода. Их можно повсеместно наблюдать на линиях электропередач. Кабели. Отличаются от проводов тем, что жилы заключены в герметичную оболочку, которая может быть изготовлена из резины, свинца, пластмассы или любого другого материала. Поверх герметизированной, в бронированных кабелях может располагаться слой брони. Её образует стальная лента или проволока. Шнур – простая конструкция из двух или трёх жил сечением до 1,5 мм2, покрытых защитным слоем, выполняющим также изолирующую функцию. В шнурах могут применяться только многожильные токопроводящие жилы. Предназначаются для подключения бытовых приборов к сети – например, пылесоса или телевизора. Алюминий редко применяется для производства этих изделий.

Достоинства и недостатки алюминиевой электропроводки

Как маркируются силовые провода и кабели

Марка кабеля может многое сказать об особенностях изделия, а также о тех материалах, которые используются в его производстве. Как правило, маркировка состоит из букв, сочетающихся с цифрами.

Если первая буква маркировки «А» – значит, жилы изготовлены из алюминия. Отсутствие такой буквы означает, что материал жил – медь. Второй буквой обозначают провод (П). Если есть буквенное сочетание «ПП» – значит, провод плоский. Это касается 2 и 3-жильных конструкций. К этой аббревиатуре могут быть добавлены буквы «М» (монтажный) или «МГ» (монтажный с гибкой жилой). Следующая буква означает материал, из которого изготовлена изоляция жил. Если следует «В» или «ВР» – это поливинилхлорид (ПВХ). Просто «П» – полиэтилен, «Р» – резина, «Н» или «НР» – резина, которая не горит, «К» — капрон, «Л» – лакированный слой. Если изоляция изготовлена из резины, её могут защищать оболочки из ПВХ (В) или негорючей резины – найрита (Н). Эти буквы располагаются после обозначения изоляции. Четвёртой буквой может быть «Г» – гибкий провод без защитного слоя, «Б» – бронированный лентами, «О» – это означает, что в оплётке.

Далее следуют цифры. Первая информирует о количестве жил, вторая – об их сечении. После обозначено напряжение сети, на которое рассчитан кабель. Например, обозначение «АВВГ 4х16-380» – алюминиевый кабель, изолируемый ПВХ. Вторая буква «В» — оболочка также из ПВХ. Последняя буква означает, что кабель не защищён. Имеет 4 жилы сечением 16 мм2, рассчитан на 380 В.

Разница между алюминием и сталью

Разница между алюминием и сталью

Металлы — это химические элементы, которые имеют характерные свойства, такие как пластичность, пластичность и электропроводность. Большинство элементов в периодической таблице являются металлами. Одним из основных применений металлов является производство металлических сплавов, таких как сталь. Основное отличие алюминия от стали в том, что алюминий металл в то время как Сталь — это металлический сплав.

Ключевые области покрыты

1. Что такое алюминий
— Производство, Недвижимость, Использование
2. Что такое сталь
Типы, компоненты, свойства, использование
3. В чем разница между алюминием и сталью
— Сравнение основных различий

Ключевые термины: алюминий, пластичность, ковкость, металл, металлический сплав, нержавеющая сталь, сталь

Преимущества и недостатки алюминия

Что такое алюминий

Алюминий (Al) — это мягкий металл серебристо-серого цвета. Имеет блестящий вид Алюминий имеет легкий вес по сравнению с другими металлами. Он податлив, то есть может деформироваться под давлением. Эти свойства алюминия сделали его для использования в авиастроении.

Алюминий обладает высокой устойчивостью к коррозии, поскольку он может образовывать защитный слой на своей поверхности путем окисления в оксид алюминия. Кроме того, это хороший проводник тепла и электричества. Степень пластичности высока для алюминия; это означает, что алюминий может быть легко расплавлен и вытянут в проволочные структуры. Алюминиевая фольга непроницаема, даже если она очень тонкая.

Металлический алюминий получают из оксида алюминия (оксида алюминия). Процесс рафинирования алюминия от глинозема известен как процесс Холла-Херулта. Процесс включает в себя следующие шаги.

  • Растворение глинозема в расплавленном криолите.
  • Разделение глинозема на его элементы путем электролиза.

Преимущества и недостатки алюминия

Рисунок: кубик алюминия

Что такое сталь

Сталь представляет собой металлический сплав, состоящий из железа, углерода и нескольких других элементов, таких как марганец, вольфрам, фосфор и сера. Процентное содержание углерода в стали может варьироваться. По количеству присутствующего углерода сталь можно разделить на несколько групп, таких как:

  • Мягкая сталь
  • Высокая углеродистая сталь
  • Низкоуглеродистая сталь

Иногда сталь имеет некоторые другие элементы с высоким процентным содержанием, чем углерод. Хороший пример тому — нержавеющая сталь. Нержавеющая сталь содержит очень мало углерода, но вместе с железом содержит много хрома. Различные желаемые свойства могут быть получены путем смешивания различных металлических и неметаллических элементов с железом в различных количествах. Типы стали в соответствии с различными присутствующими элементами;

  • Углеродистая сталь — основные компоненты — железо и углерод
  • Легированная сталь — основными компонентами являются железо, углерод и марганец
  • Нержавеющая сталь — железо и хром с небольшим количеством углерода
  • Инструментальная сталь — вольфрам, молибденоподобные металлы присутствуют с железом

Сталь твердая, очень прочная и пластичная. Но он не устойчив к коррозии (за исключением нержавеющей стали, которая изготавливается путем смешивания хрома с железом, что придает свойства коррозионной стойкости). Сталь легко подвергается коррозии при воздействии влажной среды. Поэтому происходит ржавчина.

Преимущества и недостатки алюминия

Рисунок 2: Ржавчина стали

Разница между алюминием и сталью

Определение

Алюминий: Алюминий — это мягкий металл серебристо-серого цвета.

Сталь: Сталь — это металлический сплав, состоящий из железа, углерода и нескольких других элементов.

Устойчивость к коррозии

Алюминий: Алюминий устойчив к коррозии и коррозии.

Сталь: Сталь не устойчива к коррозии, и ржавчина происходит легко.

плотность

Алюминий: Алюминий — это мягкий металл с относительно низкой плотностью.

Сталь: Сталь — твердосплавный сплав с высокой плотностью.

Алюминий: Алюминий — это легкий металл.

Сталь: Сталь имеет больший вес, чем алюминий.

свариваемость

Алюминий: Алюминий трудно поддается сварке.

Сталь: Сталь легко сваривается.

Температура плавления

Алюминий: Алюминий имеет более низкую температуру плавления.

Сталь: Сталь имеет очень высокую температуру плавления.

Заключение

У металлов и металлических сплавов есть много применений в промышленном масштабе. Алюминий и сталь являются такими элементами. Основное различие между алюминием и сталью заключается в том, что алюминий — это металл, а сталь — это металлический сплав.

Рекомендации:

1. «Что такое алюминий?» Наш бизнес | Боксит Ресурс Лимитед. Н.п., н.д. Web.

Алюминий

Алюминий

Алюминий (лат. Aluminium) — серебристо-белый металл, 13-й элемент периодической таблицы химических элементов третьего периода, с атомным номером 13. Обозначается символом Al.
Название элемента образовано от латинского alumen — квасцы.

Алюминий относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий — лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Впервые алюминий был получен датским физиком Гансом Эрстедом в 1824 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Прошло еще полвека, прежде чем началось промышленное производство алюминия.

Ханс Кристиан Эрстед

Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук

До открытия промышленного способа получения алюминия этот металл был дороже золота. В 1889 году британцы, желая почтить богатым подарком великого русского химика Д.И. Менделеева, подарили ему весы из золота и алюминия.

Свойства алюминия

Лёгкость, прочность, стойкость к коррозии и широкий спектр функциональных возможностей сделали алюминий одним их главных конструкционных материалов нашего времени. Алюминий есть в наших домах, автомобилях, поездах и самолетах, в мобильных телефонах и компьютерах. Сегодня этот металл часто незаменим в дизайне интерьеров, а ведь еще 200 лет назад о нем было известно очень мало.

Алюминий – самый распространенный металл на Земле, на него приходится более 8% всей массы земной коры, и это третий по распространенности химический элемент на нашей планете после кислорода и кремния. При этом алюминий не встречается в природе в чистом виде из-за своей высокой химической активности. Чаще всего в природе алюминий встречается в составе квасцов. Это минералы, объединяющие в себе две соли серной кислоты: одну на основе щелочных металлов (лития, натрия, калия, рубидия или цезия), а другую – на основе металла третьей группы таблицы Менделеева, преимущественно алюминия. Квасцы и сегодня применяют при очистке воды, в кулинарии, медицине, косметологии, в химической и других отраслях промышленности.

Алюминий имеет редкое сочетание ценных свойств. Это один из самых легких металлов в природе: он почти в три раза легче железа, но при этом прочен, чрезвычайно пластичен и не подвержен коррозии, так как его поверхность всегда покрыта тончайшей, но очень прочной оксидной пленкой. Он не магнитится, отлично проводит электрический ток и образует сплавы практически со всеми металлами.

Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.

Очень высока ковкость алюминия: из него можно изготовить листы толщиной всего 4 микрона и тончайшую проволоку. А сверхтонкая алюминиевая фольга втрое тоньше человеческого волоса. Кроме того, по сравнению с другими металлами и материалами он более экономичен.

Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.

Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.

Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.

Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.

Бокситы

Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.

Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.

Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца. Поэтому строят алюминиевые заводы чаще всего вблизи от мощных и возобновляемых источников энергии, обычно – гидроэлектростанций, представляющих самый мощный вид «зеленой энергетики».

Бокситы в 1821 году открыл геолог Пьер Бертье на Юге Франции. Порода получила свое название в честь местности Ле-Бо (Les Baux), где была найдена. Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – в Гвинее, Австралии, Вьетнаме, Бразилии, Индии и на Ямайке.

Корунд

Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.

Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.

На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.

Один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.

Источник https://burforum.ru/cvetmet/alyuminievyj-eto.html

Источник https://ru.strephonsays.com/difference-between-aluminium-and-steel

Источник https://site-metall.com/projects/2956-alyuminij.html

Добавить комментарий

Ваш адрес email не будет опубликован.