Содержание
Понятие о математическом моделировании. Виды моделирования. Математическое моделирование
основные тенденции в развитии математического (компьютерного) моделирования в последние годы связываются не столько с решением «микро» проблем, таких как представленное выше соотношение «модель-алгоритм-программа». Акценты моделирования все более смещаются к «макро-проблемам». Действительно, аппаратно-программные средства решения микро-проблем за последнее время практически перестали ограничивать возможности моделирования даже в самых крупных проектах. Во всем мире наряду с базовыми языками программирования для моделирования широко используются десятки специализированных языков и коммерчески доступных систем моделирования, а возможности сетевого общения открывают доступ к самым современным методологиям и идеям.
В современной теории управления создаются и применяются математические модели двух основных типов (хотя в различных разделах теории эти типы и определяются по-разному).
Для технологических объектов это деление соответствует «феноменологическим» и «дедуктивным» моделям. Под феноменологическими моделями понимаются преимущественно эмпирически восстанавливаемые входо-выходные зависимости, как правило, с небольшим числом входов и выходов. Дедуктивное моделирование предполагает выяснение и описание основных физических закономерностей функционирования всех узлов исследуемого процесса и механизмов их взаимодействия. Дедуктивные модели намного богаче, они описывают процесс в целом, а не отдельные его режимы.
Первый тип моделей — аналитические модели (или, точнее говоря, модели данных). «Модели данных — это модели, которые не требуют, не используют и не отображают каких-либо гипотез о физических процессах (системах), в которых эти данные получены». Второй тип моделей — системные модели (или модели систем). Это математические модели , которые «строятся в основном на базе физических законов и гипотез о том, как система структурирована и, возможно, о том, как она функционирует».
В классическом понимании к моделям данных (аналитическим моделям) относятся все модели математической статистики . В последнее время характерные макро-изменения наблюдаются и для этих моделей. Связь с «внешним миром» проникает в эту сферу моделирования как экспертно-статистические методы и системы, что существенно расширяет методологическую базу для принятия решений в задачах анализа данных и управления.
Вплоть до недавнего времени математические модели использовались в практике управления только как источник входных данных для систем управления. Моделирование технических систем на этапе проектирования для оптимизации их структуры и параметров продолжает эту традицию.
Во многих других задачах принципиально применимы только системные модели Во многих случаях модель может входить в систему управления в форме блока, вычисляющего выходы некоторого объекта по ее входам. Часто в этом случае речь идет о развитии так называемого имитационного моделирования — динамическом моделировании объекта . Динамическое моделирование характерно для различных задач реального времени, прежде всего, для компьютерных тренажеров. Так, в процессе тренажерного обучения действия оператора интерпретируются как входы модели системы (технологической, транспортной и т.п.), а выходы модели преобразуются в аудио-визуальный образ реакций системы на действия оператора. Такое моделирование осуществляется в реальном времени, что позволяет использовать его результаты в различных технологиях реального времени (от обнаружения неисправностей до интерактивного тренинга операторов).
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать её поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра k — прямая задача математического моделирования.
Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с её моделью. Ещё одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям — такие задачи требуется решать при проектировании систем.
математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.
Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.
Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.
Содержание Предмет математического моделирования. Основы моделирования. Понятие модели. Принцип моделирования. Моделирование как метод научного познания. Этапы моделирования. Характеристика 1 – 2 этапов. Этапы моделирования. Характеристика 3 – 4 этапов. Классификация моделей. Общий обзор. Классификация экономико-математических моделей. Этапы экономико-математического моделирования. Математическая модель. Линейное программирование. Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования. Симплексный метод. Построение начального опорного плана. Симплексные таблицы. Признак оптимальности опорного плана. Понятие двойственности. Построение двойственных задач и их свойства. Транспортная задача. Построение исходного опорного плана. Транспортная задача. Метод потенциалов.
Содержание Основные понятия и определения теории графов. Упорядочение элементов орграфа. Алгоритм Фалкерсона. Решение задач о нахождении кратчайших путей в графе. Задача о максимальном потоке и ее приложения. Транспортная задача в сетевой постановке. Элементы сетевого планирования. Принципы динамического программирования, вычислительная процедура метода. Метод Монте-Карло. Суть метода. Решение задач методом Монте-Карло. Элементы теории матричных игр. Парные матричные игры с нулевой суммой. Методы решения матричных игр. Игры с природой. Критерии для принятия решения. Пакет Maple 7. Общий обзор пакета. Его возможности. Интерфейс программы, работа с командами. Использование переменных. Работа с таблицами.
Предмет математического моделирования. Основы моделирования Математическое моделирование — это исследование явлений, процессов, систем или объектов путем построения и изучения их моделей и использования последних для определения или уточнения характеристик и рациональных способов построения вновь конструируемых технологических процессов, систем и объектов. Математическая модель — это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими категориями. Эти отношения, как правило, представлены в форме уравнений и (или) неравенств, характеризующих функционирование моделируемой реальной системы. Искусство построения математических моделей состоит в том, чтобы совместить как можно большую лаконичность в ее математическом описании с достаточной точностью модельного воспроизводства именно тех сторон анализируемой реальности, которые интересуют исследователя. Меню Моделирование — творческий процесс, требующий серьезной подготовки и переработки большого объема информации, сочетающий в себе трудоемкость и эвристические начала и носящий вероятностный характер.
Понятие модели. Моделирование как метод научного познания Модель — это некоторое упрощенное подобие реального объекта, явления или процесса. Модель — это такой материальный или мысленно представляемый объект, который замещает объект-оригинал с целью его исследования, сохраняя некоторые важные для данного исследования типичные черты и свойства оригинала. Хорошо построенная модель, как правило, доступнее для исследования, чем реальный объект (например, такой, как экономика страны, Солнечная система и т. п.). Другое, не менее важное назначение модели состоит в том, что с ее помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта. Модель также позволяет учиться управлять объектом, что важно в тех случаях, когда экспериментировать с объектом бывает неудобно, трудно или невозможно (например, когда эксперимент имеет большую продолжительность или когда существует риск привести объект в нежелательное или необратимое состояние). Таким образом, можно сделать вывод, что модель необходима для того, чтобы: понять, как устроен конкретный объект — каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром; научиться управлять объектом или процессом и определить наилучшие способы управления при заданных целях и критериях (оптимизация); Меню прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект, процесс.
Этапы моделирования Характеристика 1 этапа I этап. Постановка задачи Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное — определить объект моделирования и понять, что собой должен представлять результат. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть «что будет, если. . . «. Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как сделать, чтобы. . . «. Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи. Далее переходят к описанию объекта или процесса. На этой стадии выявляются факторы, от которых зависит поведение модели. При моделировании в электронных таблицах учитывать можно только те параметры, которые имеют количественные характеристики. Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть. При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система — надо перейти к анализу объектов, ее составляющих, определить связи между ними. Меню
Этапы моделирования Характеристика 2 этапа II этап. Разработка модели По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи. Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся «вручную». Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц. Меню
Этапы моделирования Характеристика 3 этапа III этап. Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется. Меню
Этапы моделирования Характеристика 4 этапа IV этап. Анализ результатов моделирования Заключительный этап моделирования — анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса. Меню
Классификация моделей Классификация по области использования Учебные: наглядные пособия, различные тренажеры, обучающие программы. Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего изучения (модели корабля, автомобиля, самолета, гидростанции). Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон — ускоритель электронов и др.). Игровые: военные, экономические, спортивные, деловые игры. Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии). Классификация с учетом фактора времени Статическая модель — модель объекта в данный момент времени. Динамическая модель позволяет увидеть изменения объекта во времени. Меню
Классификация моделей Классификация по способу представления Материальная модель — это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы). Информационная модель — это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными. Вербальная модель — информационная модель в мысленной или разговорной форме. Знаковая модель — информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка. Знаковые модели — это рисунки, тексты, графики, схемы, таблицы и т. д. Компьютерная модель — модель, реализованная средствами программной среды. Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «перевести» полученную структуру в какую-либо заранее определенную форму — формализовать информацию. Меню Формализация — это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру — форму.
Классификация экономикоматематических моделей Экономико-математические модели – модели управляемых и регулируемых экономических процессов, использующиеся для преобразования экономической действительности. Адекватность моделей объектам моделирования определяется по совпадению результатов исследования с наблюдаемыми фактами. Практика в этом случае означает действительность. По целевому назначению экономико-математические модели бывают Теоретико-аналитические Прикладные Экономико-математические модели делятся на модели всего народного хозяйства и его подсистем (отраслей, регионов и т. д.) Модели бывают функциональные и структурные. Модели бывают дескрептивные и нормативные. Дескрептивные модели отвечают на вопрос, как это происходит и как может дальше развиваться? Нормативные модели отвечают на вопрос как это должно быть? То есть предполагают целенаправленную деятельность. Различают модели жёстко детерминистские и модели, учитывающие случайность и неопределённость. Модели бывают статически и динамические. По длительности рассматриваемого периода различают модели краткосрочного (1 -5 лет) и долгосрочного (10 -15 и более лет) прогнозирования, планирования. Само время в таких моделях может изменяться либо, непрерывно либо дискретно. Меню Модели могут быть линейные и нелинейные.
Этапы экономико-математического моделирования. Постановка экономической проблемы и её анализ. Главное – определить сущность проблемы, принимаемые допущения и те вопросы на которые, требуется получить ответы. Этап включает выделение важнейших черт и свойств объекта, абстрагирование от второстепенных. Формирование гипотез, если требуется, объясняющих поведение и развитие объекта. Построение математической модели. Этап формализации экономической проблемы. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше. Изменение сложности и громоздкости модели затрудняет процесс исследования. Нужно учитывать реальные возможности информационного и математического обеспечения. Нужно сопоставить затраты на моделирование с получаемым эффектом. Одной из важнейших особенностей математической модели является потенциальная возможность их использования для решения разных задач. Меню
Этапы экономико-математического моделирования. Математический анализ модели. Целью данного этапа является выяснение общих свойств модели. Важный момент – доказательство существования решения. Подготовка исходной информации Надо учитывать за какие сроки будет собрана нужная информация, учитывать затраты на подготовку информации. В процессе подготовки широко используются методы теории вероятности, теоретической и математической статистики. Численное решение. Разработка алгоритмов для численного решения задачи, составления программ для компьютера и непосредственно проведение расчетов. Трудность на этом этапе создаёт большая размерность экономических задач и необходимость обработки значительных массивов информации. Меню Анализ численных результатов и их применение. На этом этапе встаёт вопрос о правильности и полноте результатов моделирования, о степени их практической применимости.
Линейное программирование. Это раздел математического моделирования, все зависимости которого линейны. Математическая модель любой задачи линейного программирования имеет вид Z= max(min) Меню Условия не отрицательности Xj ≥ 0
Пример: При изготовлении изделий u 1 и u 2 используются токарные и фрезерные станки, а также сталь и цветные металлы, по технологическим нормам на производство единице изделия u 1 требуется 300 и 200 единиц соответственно токарного и фрезерного оборудования (в часах), и 10 и 20 единиц стали и цветных металлов (в кг.). для производства изделия u 2 требуется 400, 100, 70, 50 соответственно единиц тех же ресурсов. Цех располагает 12400 и 6800 часами, 640 и 840 кг. материала. Прибыль от реализации единице изделия u 1=6000 ден. ед. , u 2=16000 ден. ед. Требуется: Свести исходные данные в таблицу, удобную для построения модели. Составить математическую модель задачи. Определить план выпуска изделий, обеспечить max прибыль при условие что, время работы фрезерных станков должно быть использовано полностью.
Решение: Пусть х1 — число изделий u 1, а х2 – число изделий u 2, z – суммарная прибыль.
Линейное программирование. Эта общая или производная форма записи. Переменные Xj, которые удовлетворяют системе ограничений и условию не отрицательности, называются допустимыми. Допустимые переменные, которые превращают целевую функцию в max или min, называются оптимальными. Методы решения таких задач подразделяются на универсальные и специальные. Универсальным методом решают любые ЗЛП. Специальные методы учитывают особенности модели. Особенностью ЗЛП является то, что max (min) целевая функция достигает на границе области допустимых решений. К ЗЛП относятся: задача о выборе оптимальных технологий; задача о смесях; задача о раскрое материала; транспортная задача; Меню задача о наилучшем использовании ресурсов; задача о размещении заказа;
Постановка задачи линейного программирования Любая ЗЛП записывается с помощью математической модели. Существует 3 формы записи ЗЛП Меню Общая (произвольная)
Постановка задачи линейного программирования Все эти формы эквивалентны. Чтобы от max перейти к min (или наоборот) надо поменять знаки у каждого слагаемого в записи целевой функции. Чтобы превратить неравенство вида в неравенство вида (и наоборот) нужно обе части неравенства умножить на -1. Меню Каноническая (основная) Чтобы неравенство превратить в равенство (и наоборот) нужно добавить или отнять от левой части дополнительную неотрицательную переменную, она называется балансовой. При записи целевой функции она имеет коэффициент =0.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Основные понятия математического моделирования
Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.
Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.
Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.
Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д.
Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы — например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.
Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.
Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.
Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.
2. Особенности построения математических моделей
Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть «переведена» на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена егоматематическая модель.
Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.
Для построения математической модели необходимо:
Тщательно проанализировать реальный объект или процесс;
Выделить его наиболее существенные черты и свойства;
Определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
Описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
Выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
Определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.
Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:
Построение алгоритма, моделирующего поведение объекта, процесса или системы;
Проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
Математическое описание исследуемых процессов и систем зависит от:
Природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
Требуемой достоверности и точности изучения и исследования реальных процессов и систем.
На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.
Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации, она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.
Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальныйобъект (поверхность стола) заменяется абстрактной математической моделью — прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.
Однако модель прямоугольника для письменного стола — это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.
С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.
Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 4).
Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями.Пользуясь этой схемой, мы выводим уравнение движения механизма.Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.
Запишем эти уравнения:
где С 0 — крайнее правое положение ползуна С:
r — радиус кривошипа AB;
l — длина шатуна BC;
Угол поворота кривошипа;
Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун — это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела — упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.
Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимуюзадачу.
Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.
Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.
Построение математической модели в прикладных задачах — один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель — значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, — определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.
3. Обобщенная математическая модель
Математическая модель описывает зависимость между исходными данными и искомыми величинами.Элементами обобщенной математической модели являются (рис. 1):
· множество входных данных (переменные) X,Y; X — совокупность варьируемых переменных; Y — независимые переменные (константы);
· математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);
· множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.
Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.
Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров R x (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.
Множество независимых переменных Y образуют метрическое пространство входных данных R y . В том случае, когда каждый компонент пространства R y задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства R y .
Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.Это могут быть:
Технические параметры объекта, не подлежащие изменению в процессе проектирования;
Физические возмущения среды, с которой взаимодействует объект проектирования;
Тактические параметры, которые должен достигать объект проектирования.
Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей R G .
Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.
4. Требования к математическим моделям
математический модель задача результат
Основными требованиями к МО являются требования адекватности, точности, экономичности.
1. Адекватность — способность отображать заданные свойства объекта с погрешностью не выше заданной.
2. Точность — оценивается степенью совпадения значений параметров действительного объекта и рассчитанных на математических моделях.
3. Универсальность — характеризует полноту отображения в модели свойств реального объекта.
4. Экономичность — обычно характеризуется необходимыми затратами машинной памяти и времени. Иногда оценивается по количеству операций необходимых при одном обращении к модели.Аналогичные требования по точности и экономичности фигурируют при выборе численных методов решения уравнений модели.
Требования универсальности, точности, адекватности с одной стороны и экономичности с другой противоречивы. Это обуславливает работу целого спектра моделей отличающихся теми или иными свойствами.
5. Методы получения математической модели
1. Выбор свойств объекта, которые подлежат отражению в модели. Выбор основан на анализе возможных применений модели и определяет степень универсальности ММ.
2. Сбор исходной информации о выбранных свойствах объекта. Источниками сведений могут быть: опыт и знания инженера, разрабатывающего модель; научно-техническая литература, прежде всего справочная; описания прототипов — имеющихся ММ для элементов, близких по своим свойствам к исследуемому объекту; результаты экспериментального измерения параметров и т. п.
3. Синтез структуры ММ. Структура ММ — общий вид математических соотношений модели без конкретизации числовых значений фигурирующих в них параметров. Структура модели может быть представлена также в графической форме, например в виде эквивалентной схемы или графа. Синтез структуры — наиболее ответственная и наиболее трудно поддающаяся формализации операция.
4. Расчет числовых значений параметров ММ. Эта задача ставится как задача минимизации погрешности модели заданной структуры.
5. Оценка точности и адекватности ММ. Для оценки точности должны использоваться значения, которые не фигурировали при решении задачи.
6. Реализация функциональных ММ на ЭВМ подразумевает выбор численного метода решения уравнений и преобразование уравнений в соответствии с особенностями выбранного метода. Конечная цель преобразований — получение рабочей программы анализа в виде последовательности элементарных действий (арифметических и логических операций), реализуемых командами ЭВМ. Указанные преобразования исходной ММ в последовательности элементарных действий ЭВМ выполняет автоматически по специальным программам, создаваемым инженером — разработчиком САПР. Инженер-пользователь САПР должен лишь указать, какие программы из имеющихся он хочет использовать. Процесс преобразований ММ, относящихся к различным иерархическим уровням, иллюстрирует рисунок 3.
Рисунок 3 Процесс преобразования математических моделей ДУЧП — дифференциальные уравнения с частными производными; ОДУ — обыкновенные дифференциальные уравнения; АУ — алгебраические уравнения; ЛАУ — линейные алгебраические уравнения; 1. 12 — взаимно направленные пути дискретизации переменных в ММ
7. Инженер-пользователь задает исходную информацию об анализируемом объекте и о проектных процедурах, подлежащих выполнению, на удобном для него проблемно-ориентированном языке программного комплекса. Ветви 1 на рисунке 5.1 соответствует постановка задачи, относящейся к микроуровню, как краевой, чаще всего в виде ДУЧП. Численные методы решения ДУЧП основаны на дискретизации переменных и алгебраизации задачи.
Дискретизация заключается в замене непрерывных переменных конечным множеством их значений в заданных для исследования пространственном и временном интервалах; алгебраизация — в замене производных алгебраическими соотношениями.
6. Использование математических моделей
Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.
При составлении математической модели от исследователя требуется:
· изучить свойства исследуемого объекта;
· умение отделить главные свойства объекта от второстепенных;
· оценить принятые допущения.
Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.
Алгоритм решения задачи связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.
Размещено на Allbest.ru
Подобные документы
Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.
курсовая работа , добавлен 11.12.2011
Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа , добавлен 17.11.2016
Сущность понятия «дифференциальное уравнение». Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.
курсовая работа , добавлен 06.12.2013
Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.
контрольная работа , добавлен 20.04.2016
Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.
курсовая работа , добавлен 21.01.2014
Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.
курсовая работа , добавлен 21.05.2010
Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса
Математические модели
Математическая модель — приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.
Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .
Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап — определение целей моделирования. Эти цели могут быть различными:
- модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
с окружающим миром (понимание); - модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
- модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, «вдруг» начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).
Выработка концепции управления объектом — другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.
Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным — на грани выполнимости — в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.
Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. «Формализа ция и моделирование» ).
Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель — это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.
Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.
Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ — трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, — в зависимости от характера задачи и склонностей программиста.
Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это — лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.
Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.
Классификация математических моделей
В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:
- дескриптивные (описательные) модели;
- оптимизационные модели;
- многокритериальные модели;
- игровые модели.
Поясним это на примерах.
Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.
Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.
Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.
Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики — теория игр, — изучающий методы принятия решений в условиях неполной информации.
В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.
Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.
Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.
Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый — проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй — выполнение проекта учащимися под руководством учителя. Третий — самостоятельное выполнение учащимися учебного исследовательского проекта.
Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.
Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.
Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую — за проработанность проекта и успешность его защиты, вторую — за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.
Существенный вопрос — каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:
- с помощью табличного процессора (как правило, MS Excel);
- путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
Basic for Application и т.п.); - с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).
На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.
Моделирование — что такое? Метод моделирования. Математическое и компьютерное моделирование
Для того чтобы понять суть математического моделирования, рассмотрим основные определения, особенности процесса.
Суть термина
Моделирование представляет собой процесс создания и применения модели. Ею считают любой абстрактный или материальный предмет, заменяющий в процессе изучения реальный объект моделирования. Важным моментом является сохранение свойств, необходимых для полноценного анализа предмета.
Компьютерное моделирование представляет собой вариант познания, базирующийся на математической модели. Она подразумевает систему неравенств, уравнений, логических знаковых выражений, которые в полной мере отображают все характеристики явления или объекта.
Математическое моделирование предполагает конкретные расчеты, применение вычислительной техники. Для того чтобы объяснить процесс, нужны дополнительные исследования. С этой задачей успешно справляется компьютерное моделирование.
Специфичность компьютерного моделирования
Этот способ изучения сложных систем считают эффективным и результативным. Удобнее и проще анализировать именно компьютерные модели, поскольку можно осуществлять разнообразные вычислительные действия. Это особенно актуально в тех случаях, когда по физическим либо материальным причинам реальные эксперименты не позволяют получать желаемого результата. Логичность таких моделей дает возможность определять главные факторы, которые определяют параметры изучаемого оригинала.
Такое применение математического моделирования позволяет выявлять поведение объекта в различных условиях, выявлять влияние разных факторов на его поведение.
Основы компьютерного моделирования
На чем базируется такое моделирование? Что такое научные исследования на основе ИКТ? Начнем с того, что любое компьютерное моделирование основывается на определенных принципах:
- математическое моделирование для описания изучаемого процесса;
- применение инновационных математических моделей для детального рассмотрения изучаемых процессов.
Разновидности моделирования
В настоящее время выделяют разные методы математического моделирования: имитационное и аналитическое.
Аналитический вариант связан с изучением абстрактных моделей реального предмета в виде дифференциальных, алгебраических уравнений, которые предусматривают проведение четкой вычислительной техники, способной дать точное решение.
Имитационное моделирование предполагает исследование математической модели в виде определенного алгоритма, который воспроизводит функционирование анализируемой системы с помощью последовательного выполнения системы несложных вычислений и операций.
Особенности построения компьютерной модели
Подробнее рассмотрим, как происходит такое моделирование. Что такое этапы компьютерного исследования? Начнем с того, что процесс основывается на уходе от четкого объекта или анализируемого явления.
Такое моделирование состоит из двух основных этапов: создание качественной и количественной модели. Компьютерное изучение состоит в проведении системы вычислительных действий на персональном компьютере, направленных на анализ, систематизацию, сравнение результатов исследования с реальным поведением анализируемого объекта. В случае необходимости проводится дополнительное уточнение модели.
Этапы моделирования
Как осуществляется моделирование? Что такое этапы компьютерного исследования? Итак, выделяют следующий алгоритм действий, касающийся построения компьютерной модели:
1 этап. Постановка цели и задач работы, выявление объекта моделирования. Предполагается сбор данных, постановка вопроса, выявление целей и форм исследования, описание полученных результатов.
2 этап. Анализ и изучение системы. Осуществляется описание объекта, создание информационной модели, подбор программных и технических средств, подбираются примеры математического моделирования.
3 этап. Переход к математической модели, проработка метода проектирования, подбор алгоритма действий.
4 этап. Подбор языка программирования либо среды для моделирования, обсуждение вариантов анализа, записи алгоритма на определенном языке программирования.
5 этап. Он состоит в проведении комплекса вычислительных экспериментов, отладке расчетов, обработке полученных результатов. В случае необходимости, на данном этапе осуществляется корректировка моделирования.
6 этап. Интерпретация результатов.
Как анализируется проведенное моделирование? Что такое программные продукты для исследования? В первую очередь подразумевается использование текстовых, графических редакторов, электронных таблиц, математических пакетов, позволяющих получать максимальный результат от проведенных исследований.
Проведение вычислительного эксперимента
Все методы математического моделирования базируются на экспериментах. Под ними принято понимать опыты, проводимые с моделью или объектом. Состоят они в осуществлении определенных действий, позволяющих определять поведение экспериментального образца в ответ на предлагаемые действия.
Вычислительный эксперимент невозможно представить без проведения расчетов, которые связаны с применением формализованной модели.
Основы математического моделирования предполагают проведение исследований с реальным объектом, но вычислительные действия проводят с его точной копией (моделью). При выборе конкретного набора исходных показателей модели, после завершения вычислительных действий, можно получать оптимальные условия для полноценного функционирования реального объекта.
К примеру, имея математическое уравнение, которое описывает протекание анализируемого процесса, при изменении коэффициентов, начальных и промежуточных условий, можно предположить поведение объекта. Кроме того, можно создать достоверный прогноз поведения этого объекта или природного явления в определенных условиях. В случае нового набора исходных данных важно проводить новые вычислительные эксперименты.
Сравнение полученных данных
Чтобы осуществить адекватную проверку реального объекта либо созданной математической модели, а также оценить результаты исследований на вычислительной технике с результатами эксперимента, проведенного на натурном опытном образце, осуществляется сравнение результатов исследований.
От того, каково расхождение между сведениями, полученными в ходе исследований, зависит решение о построении готового образца либо о корректировке математической модели.
Подобный эксперимент дает возможность заменять натуральные дорогостоящие исследования расчетами на вычислительной технике, за минимальные временные сроки анализировать возможности применения объекта, выявлять условия его реальной эксплуатации.
Моделирование в средах
Например, в среде программирования используется три этапа математического моделирования. На этапе создания алгоритма и информационной модели определяют величины, которые будут являться входными параметрами, результатами исследования, выявляют их тип.
В случае необходимости составляют специальные математические алгоритмы в виде блок-схем, записываемые на определенном языке программирования.
Компьютерный эксперимент предполагает анализ полученных при расчетах результатов, их корректировку. Среди важных этапов подобного исследования отметим проведение тестирования алгоритма, анализ работоспособности программы.
Ее отладка подразумевает поиск и устранение ошибок, которые приводят к нежелательному результату, появлению погрешностей в вычислениях.
Тестирование предполагает проверку правильности функционирования программы, а также оценку достоверности отдельных ее компонентов. Процесс состоит в проверке работоспособности программы, ее пригодности для изучения определенного явления или объекта.
Электронные таблицы
Моделирование с помощью электронных таблиц позволяет охватывать большой объем задач в различных предметных направлениях. Их считают универсальным инструментом, который позволяет решать трудоемкую задачу по расчету количественных параметров объекта.
В случае такого варианта моделирования наблюдается некоторая трансформация алгоритма решения задачи, нет необходимости разрабатывать вычислительный интерфейс. При этом присутствует этап отладки, который включает в себя удаление ошибок данных, поиск связи между ячейками, выявление вычислительных формул.
По мере работы появляются и дополнительные задачи, например вывод результатов на бумажные носители, рациональное представление информации на компьютерном мониторе.
Последовательность действий
Осуществляется моделирование в электронных таблицах по определенному алгоритму. Сначала определяются цели исследования, выявляются основные параметры и связи, на основе полученной информации составляется конкретная математическая модель.
Для качественного рассмотрения модели используют начальные, промежуточные, а также конечные характеристики, дополняют их чертежами, схемами. С помощью графиков и диаграмм получают наглядное представление о результатах работы.
Моделирование в среде СУБД
Оно позволяет решать следующие задачи:
- хранить информацию, проводить ее своевременное редактирование;
- упорядочивать имеющиеся данные по конкретным признакам;
- создавать разные критерии для подбора данных;
- представлять имеющиеся сведения в удобном виде.
По мере разработки модели на базе исходных данных создаются оптимальные условия для описания характеристик объекта с помощью специальных таблиц.
При этом осуществляется сортировка информации, поиск и фильтрация данных, создание алгоритмов для проведения вычислений. С помощью компьютерной информационной панели можно создавать разные экранные формы, а также варианты для получения печатных бумажных отчетов о ходе эксперимента.
При несовпадении полученных результатов с планируемыми вариантами меняют параметры, проводят дополнительные исследования.
Применение компьютерной модели
Вычислительный эксперимент и компьютерное моделирование являются новыми научными методами исследования. Они позволяют модернизировать вычислительный аппарат, применяемый для построения математической модели, конкретизировать, уточнять, усложнять эксперименты.
Среди самых перспективных для практического использования, проведения полноценного вычислительного эксперимента выделяют проектирование реакторов для мощных атомных станций. Кроме того, сюда относят создание магнитогидродинамических преобразователей электрической энергии, а также сбалансированного перспективного плана для страны, региона, отрасли.
Именно с помощью компьютерного и математического моделирования можно проводить проектирование приборов, необходимых для изучения термоядерных реакций, химических процессов.
Компьютерное моделирование и вычислительные эксперименты дают возможность сводить далеко «не математические» объекты к составлению и решению математической задачи.
Это открывает большие возможности для применения математического аппарата в системе с современной вычислительной техникой для решения вопросов, касающихся освоения космического пространства, «покорения» атомных процессов.
Именно моделирование стало одним из важнейших вариантов познания различных окружающих процессов и природных явлений. Это познание является сложным и трудоемким процессом, подразумевает применение системы различных видов моделирования, начиная с разработки уменьшенных моделей реальных объектов, завершая подбором специальных алгоритмов для проведения сложных математических вычислений.
В зависимости от того, какие процессы или явления будут анализироваться, подбираются определенные алгоритмы действий, математические формулы для вычислений. Компьютерное моделирование позволяет с минимальными затратами получать желаемый результат, важную информацию о свойствах и параметрах объекта либо явления.
В данной работе мы предлагаем как можно подробно разобрать тему моделирования в информатике. Этот раздел имеет большое значение для подготовки будущих специалистов в сфере информационных технологий.
Для решения любой задачи (производственной или научной) информатика использует следующую цепочку:
В ней стоит уделить особое внимание понятию «модель». Без наличия данного звена решение задачи не будет возможным. Зачем же используется модель и что под данным термином понимается? Об этом мы и поговорим в следующем разделе.
Модель
Моделирование в информатике — это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства. Модель для решения задачи необходима, так как она, собственно, и используется в процессе решения.
В школьном курсе информатики тема моделирования начинает изучаться еще в шестом классе. В самом начале детей необходимо познакомить с понятием модели. Что это такое?
- Упрощенное подобие объекта;
- Уменьшенная копия реального объекта;
- Схема явления или процесса;
- Изображение явления или процесса;
- Описание явления или процесса;
- Физический аналог объекта;
- Информационный аналог;
- Объект-заменитель, отражающий свойства реального объекта и так далее.
Модель — это очень широкое понятие, как это уже стало ясно из вышеперечисленного. Важно отметить, что все модели принято делить на группы:
- материальные;
- идеальные.
Под материальной моделью понимают предмет, основанный на реально существующем объекте. Это может быть какое-либо тело или процесс. Данную группу принято подразделять еще на два вида:
- физические;
- аналоговые.
Такая классификация носит условный характер, ведь четкую границу между двумя этими подвидами провести очень трудно.
Идеальную модель охарактеризовать еще труднее. Она связаны с:
- мышлением;
- воображением;
- восприятием.
К ней можно отнести произведения искусства (театр, живопись, литература и так далее).
Цели моделирования
Моделирование в информатике — это очень важный этап, так как он преследует массу целей. Сейчас предлагаем с ними познакомиться.
В первую очередь моделирование помогает познать окружающий нас мир. Испокон веков люди накапливали полученные знания и передавали их своим потомкам. Таким образом появилась модель нашей планеты (глобус).
В прошлые века осуществлялось моделирование несуществующих объектов, которые сейчас прочно закрепились в нашей жизни (зонт, мельница и так далее). В настоящее время можелирование направлено на:
- выявление последствий какого-либо процесса (увеличения стоимости проезда или утилизации химических отходов под землей);
- обеспечение эффективности принимаемых решений.
Задачи моделирования
Информационная модель
Теперь поговорим еще об одном виде моделей, изучаемых в школьном курсе информатики. Компьютерное моделирование, которое необходимо освоить каждому будущему IT-специалисту, включает в себя процесс реализации информационной модели при помощи компьютерных средств. Но что это такое, информационная модель?
Она представляет собой целый перечень информации о каком-либо объекте. Что данная модель описывает, и какую полезную информацию несет:
- свойства моделируемого объекта;
- его состояние;
- связи с окружающим миром;
- отношения с внешними объектами.
Что может служить информационной моделью:
- словесное описание;
- текст;
- рисунок;
- таблица;
- схема;
- чертеж;
- формула и так далее.
Отличительная особенность информационной модели заключается в том, что ее нельзя потрогать, попробовать на вкус и так далее. Она не несет материального воплощения, так как представлена в виде информации.
Системный подход к созданию модели
В каком классе школьной программы изучается моделирование? Информатика 9 класса знакомит учеников с данной темой более подробно. Именно в этом классе ребенок узнает о системном подходе моделирования. Предлагаем об этом поговорить немного подробнее.
Начнем с понятия «система». Это группа взаимосвязанных между собой элементов, которые действуют совместно для выполнения поставленной задачи. Для построения модели часто пользуются системным подходом, так как объект рассматривается как система, функционирующая в некоторой среде. Если моделируется какой-либо сложный объект, то систему принято разбивать на более мелкие части — подсистемы.
Цель использования
Сейчас мы рассмотрим цели моделирования (информатика 11 класс). Ранее говорилось, что все модели делятся на некоторые виды и классы, но границы между ними условны. Есть несколько признаков, по которым принято классифицировать модели: цель, область знаний, фактор времени, способ представления.
Что касается целей, то принято выделять следующие виды:
- учебные;
- опытные;
- имитационные;
- игровые;
- научно-технические.
К первому виду относятся учебные материалы. Ко второму уменьшенные или увеличенные копии реальных объектов (модель сооружения, крыла самолета и так далее). позволяет предугадать исход какого-либо события. Имитационное моделирование часто применяется в медицине и социальной сфере. Наример, модель помогает понять, как люди отреагируют на ту или иную реформу? Прежде чем сделать серьезную операцию человеку по пересадке органа, было проведено множество опытов. Другими словами, имитационная модель позволяет решить проблему методом «проб и ошибок». Игровая модель — это своего рода экономическая, деловая или военная игра. С помощью данной модели можно предугадать поведение объекта в разных ситуациях. Научно-техническую модель используют для изучения какого-либо процесса или явления (прибор имитирующий грозовой разряд, модель движения планет Солнечной системы и так далее).
Область знаний
В каком классе учеников более подробно знакомят с моделированием? Информатика 9 класса делает упор на подготовку своих учеников к экзаменам для поступления в высшие учебные заведения. Так как в билетах ЕГЭ и ГИА встречаются вопросы по моделированию, то сейчас необходимо как можно подробнее рассмотреть эту тему. И так, как происходит классификация по области знаний? По данному признаку выделяют следующие виды:
- биологические (например, искусственно вызванные у животных болезни, генетические нарушения, злокачественные новообразования);
- поведения фирмы, модель формирования рыночной цены и так далее);
- исторические (генеалогическое дерево, модели исторических событий, модель римского войска и тому подобное);
- социологические (модель личного интереса, поведение банкиров при адаптации к новым экономическим условиям) и так далее.
Фактор времени
По данной характеристике различают два вида моделей:
- динамические;
- статические.
Уже, судя по одному названию, не трудно догадаться, что первый вид отражает функционирование, развитие и изменение какого-либо объекта во времени. Статическая наоборот способна описать объект в какой-то конкретный момент времени. Этот вид иногда называют структурным, так как модель отражает строение и параметры объекта, то есть дает срез информации о нем.
- набор формул, отражающих движение планет Солнечной системы;
- график изменения температуры воздуха;
- видеозапись извержения вулкана и так далее.
Примерами статистической модели служат:
- перечень планет Солнечной системы;
- карта местности и так далее.
Способ представления
Для начала очень важно сказать, что все модели имеют вид и форму, они всегда из чего-то делаются, как-то представляются или описываются. По данному признаку принято таким образом:
- материальные;
- нематериальные.
К первому виду относятся материальные копии существующих объектов. Их можно потрогать, понюхать и так далее. Они отражают внешние или внутренние свойства, действия какого-либо объекта. Для чего нужны материальные модели? Они используются для экспериментального метода познания (опытного метода).
К нематериальным моделям мы уже тоже обращались ранее. Они используют теоретический метод познания. Такие модели принято называть идеальными либо абстрактными. Эта категория делится еще на несколько подвидов: воображаемые модели и информационные.
Информационные модели приводят перечень различной информации об объекте. В качестве информационной модели могут выступать таблицы, рисунки, словесные описания, схемы и так далее. Почему данную модель называют нематериальной? Все дело в том, что ее нельзя потрогать, так как она не имеет материального воплощения. Среди информационных моделей различают знаковые и наглядные.
Воображаемая модель — это один из Это творческий процесс, проходящий в воображении человека, который предшествует созданию материального объекта.
Этапы моделирования
Тема по информатике 9 класса «Моделирование и формализация» имеет большой вес. Она обязательна к изучению. В 9-11 классе преподаватель обязан познакомить учеников с этапами создания моделей. Этим мы сейчас и займемся. Итак, выделяют следующие этапы моделирования:
- содержательная постановка задачи;
- математическая постановка задачи;
- разработки с использованием ЭВМ;
- эксплуатация модели;
- получение результата.
Важно отметить, что при изучении всего, что окружает нас, используется процессы моделирования, формализации. Информатика — это предмет, посвященный современным методам изучения и решения каких-либо проблем. Следовательно, упор делается на модели, которые можно реализовать при помощи ЭВМ. Особое внимание в этой теме следует уделить пункту разработки алгоритма решения при помощи электронно-вычислительных машин.
Связи между объектами
Теперь поговорим немного о связях между объектами. Всего выделяют три вида:
- один к одному (обозначается такая связь односторонней стрелкой в одну или в другую сторону);
- один ко многим (множественная связь обозначается двойной стрелкой);
- многие ко многим (такая связь обозначается двойной стрелкой).
Важно отметить, что связи могут быть условными и безусловными. Безусловная связь предполагает использование каждого экземпляра объекта. А в условной задействованы только отдельные элементы.
Модель — способ замещения реального объекта, используемый для его изучения. Впоследствии мы уточним данное определение.
Модель вместо исходного объекта используется в случаях, когда эксперимент опасен, дорог, происходит в неудобном масштабе пространства и времени (долговременен, слишком кратковременен, протяжен…), невозможен, неповторим, ненагляден и т. д. Проиллюстрируем это:
- «эксперимент опасен» — при деятельности в агрессивной среде вместо человека лучше использовать его макет; примером может служить луноход;
- «дорог» — прежде чем использовать идею в реальной экономике страны, лучше опробовать её на математической или имитационной модели экономики, просчитав на ней все «за» и «против» и получив представление о возможных последствиях;
- «долговременен» — изучить коррозию — процесс, происходящий десятилетия, — выгоднее и быстрее на модели;
- «кратковременен» — изучать детали протекания процесса обработки металлов взрывом лучше на модели, поскольку такой процесс скоротечен во времени;
- «протяжен в пространстве» — для изучения космогонических процессов удобны математические модели, поскольку реальные полёты к звёздам (пока) невозможны;
- «микроскопичен» — для изучения взаимодействия атомов удобно воспользоваться их моделью;
- «невозможен» — часто человек имеет дело с ситуацией, когда объекта нет, он ещё только проектируется. При проектировании важно не только представить себе будущий объект, но и испытать его виртуальный аналог до того, как дефекты проектирования проявятся в оригинале. Важно: моделирование теснейшим образом связано с проектированием. Обычно сначала проектируют систему, потом её испытывают, потом снова корректируют проект и снова испытывают, и так до тех пор, пока проект не станет удовлетворять предъявляемым к нему требованиям. Процесс «проектирование-моделирование» цикличен. При этом цикл имеет вид спирали — с каждым повтором проект становится все лучше, так как модель становится все более детальной, а уровень описания точнее;
- «неповторим» — это достаточно редкий случай, когда эксперимент повторить нельзя; в такой ситуации модель — единственный способ изучения таких явлений. Пример — исторические процессы, — ведь повернуть историю вспять невозможно;
- «ненагляден» — модель позволяет заглянуть в детали процесса, в его промежуточные стадии; при построении модели исследователь как бы вынужден описать причинно-следственные связи, позволяющие понять все в единстве, системе. Построение модели дисциплинирует мышление. Важно: модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта. Не построив модель, вряд ли удастся понять логику действия системы. Это означает, что модель позволяет разложить систему на элементы, связи, механизмы, требует объяснить действие системы, определить причины явлений, характер взаимодействия составляющих.
Процесс моделирования есть процесс перехода из реальной области в виртуальную (модельную) посредством формализации, далее происходит изучение модели (собственно моделирование) и, наконец, интерпретация результатов как обратный переход из виртуальной области в реальную. Этот путь заменяет прямое исследование объекта в реальной области, то есть лобовое или интуитивное решение задачи. Итак, в самом простом случае технология моделирования подразумевает 3 этапа: формализация, собственно моделирование, интерпретация (рис. 1.1).
Рис. 1.1. Процесс моделирования (базовый вариант)
Если требуется уточнение, эти этапы повторяются вновь и вновь: формализация (проектирование), моделирование, интерпретация. Спираль! Вверх по кругу.
Более подробно весь цикл разработки показан на рис. 1.14, где отражены методы, способы, приёмы, с помощью которых реализуется каждый из этапов.
Поскольку моделирование — способ замещения реального объекта его аналогом, то возникает вопрос: насколько аналог должен соответствовать исходному объекту?
Вариант 1: соответствие — 100%. Очевидно, что точность решения в этом случае максимальна, а ущерб от применения модели минимален. Но затраты на построение такой модели бесконечно велики, так как объект повторяется во всех своих деталях; фактически, создаётся точно такой же объект путём копирования его до атомов (что само по себе не имеет смысла).
Вариант 2: соответствие — 0%. Модель совсем не похожа на реальный объект. Очевидно, что точность решения минимальна, а ущерб от применения модели максимален, бесконечен. Но затраты на построение такой модели нулевые.
Конечно, варианты 1 и 2 — это крайности. На самом деле модель создаётся из соображений компромисса между затратами на её построение и ущербом от неточности её применения. Это точка между двумя бесконечностями. То есть, моделируя, следует иметь в виду, что исследователь (моделировщик) должен стремиться к оптимуму суммарных затрат, включающих ущерб от применения и затраты на изготовление модели (см. рис. 1.2).
Рис. 1.2. Соотношение суммарных затрат и точности
для различных вариантов детализации прикладной модели
Просуммируйте две кривые затрат — получится одна кривая общих затрат. Найдите оптимум на суммарной кривой: он лежит между этими крайними вариантами. Видно, что неточные модели не нужны, но и абсолютная точность тоже не нужна, да и невозможна. Частое и распространённое заблуждение при построении моделей — требовать «как можно точнее».
«Модель — поиск конечного в бесконечном» — эта мысль принадлежит Д. И. Менделееву. Что отбрасывается, чтобы превратить бесконечное в конечное? В модель включаются только существенные аспекты, представляющие объект, и отбрасываются все остальные (бесконечное большинство). Существенный или несущественный аспект описания определяют согласно цели исследования. То есть каждая модель составляется с какой-то целью. Начиная моделирование, исследователь должен определить цель, отделив её от всех возможных других целей, число которых, по-видимому, бесконечно.
К сожалению, указанная на рис. 1.2 кривая является умозрительной и реально до начала моделирования построена быть не может. Поэтому на практике действуют таким образом: двигаются по шкале точности слева направо, то есть от простых моделей («Модель 1», «Модель 2»…) ко все более сложным («Модель 3», «Модель 4»…). А процесс моделирования имеет циклический спиралевидный характер: если построенная модель не удовлетворяет требованиям точности, то её детализируют, дорабатывают на следующем цикле (см. рис. 1.3).
Рис. 1.3. Спиралевидный характер процесса
проектирования и уточнения прикладных моделей
Улучшая модель, следят, чтобы эффект от усложнения модели превышал связанные с этим затраты. Как только исследователь замечает, что затраты на уточнение модели превышают эффект от точности при применении модели, следует остановиться, поскольку точка оптимума достигнута. Такой подход всегда гарантирует окупаемость вложений.
Из всего сказанного следует, что моделей может быть несколько: приближенная, более точная, ещё точнее и так далее. Модели как бы образуют ряд. Двигаясь от варианта к варианту, исследователь совершенствует модель. Для построения и совершенствования моделей необходима их преемственность, средства отслеживания версий и так далее, то есть моделирование требует инструмента и опирается на технологию.
Инструмент — типовое средство, позволяющее достичь оригинальный результат и обеспечивающее сокращение затрат на выполнение промежуточных операций (имиджи, стандартные библиотеки, мастера, линейки, резинки…).
Технология — набор стандартных способов, приёмов, методов, позволяющий достичь результата гарантированного качества с помощью указанных инструментов за заранее известное время при заданных затратах, но при соблюдении пользователем объявленных требований и порядка.
Среда — совокупность рабочего пространства и инструментов на нем, поддерживающая хранение и изменение, преемственность проектов и интерпретирующая свойства объектов и систем из них.
Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.
Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:
- изучает способы решения задач, то есть является инженерной наукой;
- является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.
Смежными моделированию предметами являются: программирование, математика, исследование операций.
Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.
Какова разница между алгоритмом и моделью?
Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.
модель + вопрос + дополнительные условия = задача.
Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.
Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.
Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.
Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).
Рядом стоят дисциплины «Компьютерная графика» и «Модели и методы искусственного интеллекта» (см. рис. 1.4).
Рис. 1.4. Основные подсистемы при проектировании комплексных моделей
Компьютерная графика помогает организовать удобный естественный интерфейс для управления моделью, для наблюдения за её реакциями. Важно понимать, что пользователь взаимодействует с моделью не напрямую, а именно через интерфейс: с одной стороны он посылает ей исходные (входные) данные (например, с помощью окон ввода, кнопок, движков, командной строки и т. д.), с другой — смотрит на результат работы модели, то есть воспринимает посредством интерфейса выходные данные.
Искусственный интеллект подразумевает построение высших моделей (например, адаптивных, которые умеют самонастраиваться, умеют создавать друг друга и т. д.). Подразумевается, что модель интеллекта в состоянии сама строить модели прикладных объектов и систем; объяснение того, как это делается, даётся в курсе «Модели и методы искусственного интеллекта». Вместе с тем заметим, что ряд исследователей, говоря об искусственном интеллекте, имеют в виду применение моделей (обучения, воспроизведения, языка и т. д.) для изучения и имитации одной из самых сложных систем во Вселенной — человека.
Заметим, что искусственный интеллект — достаточно большая модель, которая содержит обширную информацию об окружающем мире и мета-модели, умеющие её достраивать. Мета-модели имеют большое подобие с имитируемым ими человеком.
В зависимости от носителя различают модели: натурные, мысленные, математические, имитационные, графические, фотографические и так далее. Каждая из моделей обладает различной способностью к прогнозу свойств объекта. Например, по фотографии человека в анфас вряд ли можно верно представить, как выглядит его затылок. Приближение в виде трёхмерной модели — намного лучше, но можно ли с её помощью определить, когда, например, у виртуального человека вырастут волосы длиной 50 см? Имитационная модель ещё более информативна. Но наибольшей ценностью обладают модели, пригодные для решения задач, то есть обладающие прогностическими свойствами, умеющие отвечать на вопросы. Следует различать два понятия — «модель» и «задача». Модель связывает переменные между собой законами. Эти законы действуют независимо от того, какая сейчас задача стоит перед нами. Модель объективна, она подобна миру, который нас окружает, и содержит в себе информацию об этом. Структура мира (в общем смысле) неизменна, фундаментальна, модель, следовательно, тоже. А человек, как существо субъективное, имеющее собственные цели, часто меняющиеся желания, ставит, в зависимости от своих потребностей, каждый раз новые задачи, требует решить возникающие у него проблемы. Он ставит вопросы к окружающему миру, с законами которого нельзя не считаться. Удобно ставить вопросы к модели, которая содержит нужную информацию о мире. Поэтому задача — это совокупность вопроса и модели. Можно к модели задавать все новые и новые вопросы и при этом не менять модель, но менять задачу.
То есть модель — способ нахождения ответов на вопросы. Чтобы ответить на поставленный вопрос, модель должна быть преобразована по правилам, обеспечивающим её эквивалентность, к виду, соответствующему ответу на вопрос. Это означает, что модель должна быть сформирована по правилам определённой алгебры (алгебра есть правила преобразования). А процедура, которая помогает применить такие правила к модели, называется методом.
Модель падения тела под углом к горизонту содержит информацию о координатах траектории, заданных в осях (x , y ): y = –x 2 + 4 · x – 3 (координаты тела в полете) — см. рис. 1.5.
Рис. 1.5. Траектория движения тела,
брошенного под углом к горизонту
Модель связывает две переменные y и x законом f (y , x ) = 0. Модель может быть расширена некоторыми исходными данными, например, так: y = –x 2 + 4 · x – 3, y = 0 (интересуют не все возможные значения y , а только точки на поверхности Земли).
y = 0 — это тоже закон, но более мелкого масштаба. Такие уравнения могут появляться и исчезать в зависимости от исследуемой проблемы. Обычно их называют гипотезами.
Теперь модель и вопрос вместе образовали задачу:
y = –x 2 + 4 · x – 3,
y = 0,
x = ?
Ряд моделей может быть недоопределён — это означает, что вариантов ответов много (два, три, сто или бесконечное множество). Если нужен один ответ, то проблему надо доопределять, дополнять условиями. «Недоопределён» означает, что можно произвольно, кроме гипотез, законов, ответа, потребовать дополнительно выполнение ещё каких-то условий. Возможно, при построении модели что-то не было учтено, не хватает каких-то законов. Рецепт понятен: модель надо достроить. Но может быть и по-другому. Решений много и есть, видимо, лучшие решения, и есть похуже. Тогда для нахождения лучшего решения следует сузить область решений, накладывая определённые ограничения, чтобы отсеять остальные. Такие задачи часто называют задачами управления.
Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.
В нашем курсе в качестве такой среды выбрана . Лабораторные работы и демонстрации, которые вы встретите в курсе, следует запускать как проекты среды Stratum-2000.
Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований.
Моделирование является инженерной наукой, технологией решения задач. Это замечание очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:
- изучает способы решения задач, то есть является инженерной наукой;
- является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.
Смежными моделированию предметами являются: программирование, математика, исследование операций.
Программирование потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения ), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.
Какова разница между алгоритмом и моделью?
Алгоритм это процесс решения задачи путём реализации последовательности шагов, тогда как модель совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.
модель + вопрос + дополнительные условия = задача .
Математика наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.
Исследование операций дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.
Проектирование процесс создания объекта и его модели; моделирование способ оценки результата проектирования; моделирования без проектирования не существует.
Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).
В качестве примера посмотрим, как можно обнаружить, а потом описать закономерность.
Допустим, что нам нужно решить «Задачу о разрезаниях», то есть надо предсказать, сколько потребуется разрезов в виде прямых линий, чтобы разделить фигуру (рис. 1.16 ) на заданное число кусков (для примера достаточно, чтобы фигура была выпуклой).
Попробуем решить эту задачу вручную.
Из рис. 1.16 видно, что при 0 разрезах образуется 1 кусок, при 1 разрезе образуется 2 куска, при двух 4, при трёх 7, при четырёх 11. Можете ли вы сейчас сказать наперёд, сколько потребуется разрезов для образования, например, 821 куска? По-моему, нет! Почему вы затрудняетесь? Вам неизвестна закономерность K = f (P ) , где K количество кусков, P количество разрезов. Как обнаружить закономерность?
Составим таблицу, связывающую известные нам числа кусков и разрезов.
Пока закономерность не ясна. Поэтому рассмотрим разности между отдельными экспериментами, посмотрим, чем отличается результат одного эксперимента от другого. Поняв разницу, мы найдём способ перехода от одного результата к другому, то есть закон, связывающий K и P .
Уже кое-какая закономерность проявилась, не правда ли?
Вычислим вторые разности.
Теперь все просто. Функция f называется производящей функцией . Если она линейна, то первые разности равны между собой. Если она квадратичная, то вторые разности равны между собой. И так далее.
Функция f есть частный случай формулы Ньютона:
Коэффициенты a , b , c , d , e для нашей квадратичной функции f находятся в первых ячейках строк экспериментальной таблицы 1.5.
Итак, закономерность есть, и она такова:
K = a + b · p + c · p · (p 1)/2 = 1 + p + p · (p 1)/2 = 0.5 · p 2 + 0.5 · p + 1 .
Теперь, когда закономерность определена, можно решить обратную задачу и ответить на поставленный вопрос: сколько надо выполнить разрезов, чтобы получить 821 кусок? K = 821 , K = 0.5 · p 2 + 0.5 · p + 1 , p = ?
Решаем квадратное уравнение 821 = 0.5 · p 2 + 0.5 · p + 1 , находим корни: p = 40 .
Подведём итоги (обратите на это внимание!).
Сразу угадать решение мы не смогли. Поставить эксперимент оказалось затруднительно. Пришлось построить модель, то есть найти закономерность между переменными. Модель получилась в виде уравнения. Добавив к уравнению вопрос и уравнение, отражающее известное условие, образовали задачу. Поскольку задача оказалась типового вида (канонического), то её удалось решить одним из известных методов. Поэтому задача оказалась решена.
И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.
Но. Сама математика не даёт возможности выводить из результатов экспериментов какие-либо законы или модели , как это может показаться после рассмотренного только что примера. Математика это только способ изучения объекта, явления, и, причём, один из нескольких возможных способов мышления. Есть ещё, например, религиозный способ или способ, которым пользуются художники, эмоционально-интуитивный, с помощью этих способов тоже познают мир, природу, людей, себя.
Итак, гипотезу о связи переменных А и В надо вносить самому исследователю, извне, сверх того. А как это делает человек? Посоветовать внести гипотезу легко, но как научить этому, объяснить это действо, а значит, опять-таки как его формализовать? Подробно мы покажем это в будущем курсе «Моделирование систем искусственного интеллекта».
А вот почему это надо делать извне, отдельно, дополнительно и сверх того, поясним сейчас. Носит это рассуждение имя Геделя, который доказал теорему о неполноте нельзя доказать правильность некоторой теории (модели) в рамках этой же теории (модели). Посмотрите ещё раз на рис. 1.12 . Модель более высокого уровня преобразует эквивалентно модель более низкого уровня из одного вида в другой. Или генерирует модель более низкого уровня по эквивалентному опять же её описанию. А вот саму себя она преобразовать не может. Модель строит модель. И эта пирамида моделей (теорий) бесконечна.
А пока, чтобы «не подорваться на ерунде», вам надо быть настороже и проверять все здравым смыслом. Приведём пример, старую известную шутку из фольклора физиков.
Метод моделирования наиболее перспективный метод исследования требует от психолога определенного уровня математической подготовки. Здесь психические явления изучаются на основе приближенного образа реальности — ее модели. Модель дает возможность сосредоточить внимание психолога лишь на главных, наиболее существенных чертах психики. Модель — это полномочный представитель изучаемого объекта (психического явления, процесса мышления и др.). Конечно, лучше сразу получить целостное представление об изучаемом явлении. Но это, как правило, невозможно из-за сложности психологических объектов.
Модель связана со своим оригиналом соотношением подобия.
Познание оригинала с позиций психологии происходит через сложные процессы психического отражения. Оригинал и его психическое отражение соотносятся как объект и его тень. Полное познание объекта осуществляется последовательно, асимптотически, через длинную цепь познания приближенных образов. Вот эти приближенные образы и являются моделями познаваемого оригинала.
Необходимость моделирования возникает в психологии, когда:
— системная сложность объекта является непреодолимым препятствием для создания его целостного образа на всех уровнях детальности;
— требуется оперативное изучение психологического объекта в ущерб детальности оригинала;
— изучению подлежат психические процессы с высоким уровнем неопределенности и неизвестны закономерности, которым они подчиняются;
— требуется оптимизация исследуемого объекта путем варьирования входных факторов.
Задачи моделирования:
— описание и анализ психических явлений на различных уровнях их структурной организации;
— прогнозирование развития психических явлений;
— идентификация психических явлений, т. е. установление их сходства и различия;
— оптимизация условий протекания психических процессов.
Коротко о классификации моделей в психологии. Выделяют модели предметные и знаковые. Предметные имеют физическую природу и в свою очередь подразделяются на естественные и искусственные. Основу естественных моделей составляют представители живой природы: люди, животные, насекомые. Вспомним верного друга человека -собаку, послужившую моделью для изучения работы физиологических механизмов человека. В основе искусственных моделей лежат элементы «второй природы», созданные трудом человека. В качестве примера можно привести гомеостат Ф. Горбова и кибернометр Н. Обозова, служащие для исследования групповой деятельности.
Знаковые модели создаются на основе системы знаков, имеющих самую различную природу. Это:
— буквенно-цифровые модели, где в качестве знаков выступают буквы и цифры (такова, например, модель регуляции совместной деятельности Н. Н. Обозова);
— модели специальной символики (например, алгоритмические модели деятельности А. И. Губинского и Г. В. Суходольского в инженерной психологии или нотная запись для оркестрового музыкального произведения, в которой заложены все необходимые элементы, синхронизирующие сложную совместную работу исполнителей);
— графические модели, описывающие объект в виде кружков и линий связи между ними (первые могут выражать, например, состояния психологического объекта, вторые — возможные переходы из одного состояния в другое);
— математические модели, использующие разнообразный язык математических символов и имеющие свою классификационную схему;
— кибернетические модели построены на основе теории систем автоматического управления и имитации, теории информации и т. д.
Глава 1. Цели и задачи математического моделирования процессов и систем
Математическое моделирование позволяет до создания реальной системы (объекта) или возникновения реальной ситуации рассмотреть возможные режимы работы, выбрать оптимальные управляющие воздействия, составить объективный прогноз будущих состояний системы.
Вычислительные эксперименты, проводимые на основе математических моделей, помогают увидеть за частным общее, развить универсальные методы анализа объектов различной физической природы, познать свойства изучаемых процессов и систем.
Наконец, математическое моделирование является основой интенсивно разрабатываемых автоматизированных систем проектирования, управления и обработки данных.
Основная задача математического моделирования – выделение законов в природе, обществе и технике и запись их на языке математики.
1) Зависимость между массой тела m, действующей на него силой F и ускорением его движения а записывается в форме 2-го закона Ньютона: F = m× a;
2) Зависимость между напряжением в электрической цепи U, ее сопротивлением R и силой тока I записывается в виде закона Ома: I = U/R.
Существует множество определений математической модели.
Рекомендуемые файлы
Приведем одно из них:
Математической моделью некоторого объекта, процесса или явления будем называть запись его свойств на формальном языке с целью получения нового знания (свойств) об изучаемом процессе путем применения формальных методов.
Альтернативой формальному (математическому) подходу является экспериментальный подход. К его недостаткам можно отнести:
1) высокая стоимость подготовки и проведения экспериментов;
2) получение частного знания (знания о конкретном объекте исследования, а не о классе объектов).
Например, пусть требуется определить воздействие х на некоторый процесс или объект, при котором его результирующая характеристика у имеет максимально возможное значение (Рис. 1.1).
На рис. 1.1. а) показан эмпирический (экспериментальный) подход к решению поставленной задачи, который состоит в экспериментальном определении значения параметра у для нескольких значений входного воздействия х. Среди них найдено наибольшее, и оно принимается за максимум. Как видим из этого рисунка, возможно несколько значений воздействия х (х4 и х5), при которых у имеет наибольшее значение, но ни одно из них не является настоящим максимумом, который, возможно, лежит между ними.
Математический подход (рис. 1.1. б) предполагает наличие математической модели процесса типа y = f(x). Взяв производную и приравняв ее к нулю, получим уравнение, решением которого является точное значение xmax , доставляющее максимум функции у.
Схема применения математической модели при решении реальных задач имеет вид, показанный на рис. 1.2.
Модель сложного объекта (процесса, системы) не может быть простой. Из чего следует, что процесс использования математических моделей реальных систем является итерационным процессом, когда последовательно уточняется (дорабатывается) математическая модель и методы решения стоящих задач.
Важнейшей характеристикой моделей является их точность, адекватность действительности. При этом важно иметь в виду, что все модели представляют собой приближенное описание реальных объектов (процессов) и поэтому принципиально неточны. Интегральная оценка модели может быть получена путем сравнения результатов моделирования и экспериментальных данных для конкретных объектов или режимов.
Для оценки значимости совпадения или несовпадения модельных и экспериментальных результатов широко используются методы математической статистики. Вместе с тем не следует переоценивать результаты такой проверки. Хорошее совпадение модельных и экспериментальных данных, вообще говоря, не доказывает точности модели, а лишь подтверждают ее функциональную пригодность для моделирования. Всегда может быть предложена модель, обеспечивающая лучшее совпадение с экспериментом, но не лучшее описание моделируемого объекта или процесса.
1.2. Классификация математических моделей
Существует несколько схем классификации математических моделей. Все они достаточно условны. Одна из таких схем приведена на рис. 1.3.
Математические модели
Аналитические
Имитационные
Все математические модели по использованному формальному языку можно разбить на аналитические и имитационные.
Аналитические – модели, в которых используется стандартный математический язык. Имитационные – модели, в которых использован специальный язык моделирования или универсальный язык программирования.
Аналитические модели могут быть записаны в виде формул или уравнений. Если какой-либо процесс не может быть описан в виде аналитической модели, его описывают с помощью специального алгоритма или программы. Такая модель является имитационной.
Аналитические модели в свою очередь разбиваются на теоретические и эмпирические модели. Теоретические модели отражают реальные структуры и процессы в исследуемых объектах, то есть, опираются на теорию их работы. Эмпирические модели строятся на основе изучения реакций объекта на изменение условий окружающей среды. При этом теория работы объекта не рассматривается, сам объект представляет собой так называемый «черный ящик», а модель – некоторую интерполяционную зависимость. Эмпирические модели могут быть построены на основе экспериментальных данных. Эти данные получают непосредственно на исследуемых объектах или с помощью их физических моделей.
По форме описания аналитические модели подразделяются на линейные и нелинейные.
Если все входящие в модель величины не зависят от времени, то имеем статическую модель объекта или процесса, в противном случае получаем динамическую модель.
В детерминированных моделях все взаимосвязи, переменные и константы заданы точно, что приводит к однозначному определению результирующей функции. Если часть или все параметры, входящие в модель по своей природе являются случайными величинами или случайными функциями, то модель относят к классу стохастических моделей.
В стохастических моделях задаются законы распределения случайных величин, что приводит к вероятностной оценке результирующей функции.
Если аналитическое исследование может быть доведено до конца, модели называются аналитически разрешимыми. В противном случае говорят о численно разрешимых аналитических моделях.
Контрольные вопросы к лекции 1
1. Что позволяет осуществить математическое моделирование до создания реальной системы, объекта?
2. Что позволяют увидеть вычислительные эксперименты?
3. Сформулируйте основную задачу математического моделирования.
4. Дайте определение математической модели.
5. Какой подход решения научных задач является альтернативным математическому моделированию?
6. Перечислите основные недостатки экспериментального подхода.
7. Что является важнейшей характеристикой математической модели?
8. На какие два вида делятся математические модели?
9. Перечислите виды аналитических математических моделей.
10. Дайте краткую характеристику видов моделей.
1.3. Геометрическое представление математических моделей
Геометрически математическая модель может быть представлена как некоторая поверхность отклика, соответствующая расположению точек W = W(x) в k-мерном факторном пространстве Х.
Наглядно можно представить себе только одномерную и двухмерную поверхности отклика, причем в последнем случае удобно пользоваться топографическим способом изображения рельефа поверхности с помощью линий уровня (изолиний), построенных в двумерном факторном пространстве Х. (Рис. 1.4).
Область, в которой определена поверхность отклика, называется областью определения Х*.
Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi , записанных в виде равенств
fj(x) = Cj , j = 1,…, l
fj(x) £ Cj , j = 1,…, n,
При этом функции fj(x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.
Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания).
Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности.
Количество вершин (впадин) определяет модальность поверхности отклика.
Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.
Источник http://gamove.ru/health-men-and-women/ponyatie-o-matematicheskom-modelirovanii-vidy-modelirovaniya.html
Источник http://ik-ptz.ru/exam-tests—2014-for-physics/modelirovanie—chto-takoe-metod-modelirovaniya-matematicheskoe-i.html
Источник http://studizba.com/lectures/129-inzhenerija/1910-matematicheskoe-modelirovanie-processov/37301-3-celi-i-zadachi-matematicheskogo-modelirovanija-processov-i-sistem.html