Перейти к содержанию

Виды термической обработки стали

Содержание

Виды термической обработки стали

Чтобы придать металлам необходимые характеристики, прибегают к термической обработке. Завод металлоконструкций ЧЗМК выполняет закалку и отжиг стали и цветных сплавов.

Назначение термической обработки

Поскольку металлические конструкции и изделия подвергают разнообразным нагрузкам и испытаниям, они должны быть прочными, износостойкими, сопротивляться коррозии и другим разрушительным факторам. Чтобы повысить их стойкость, придать другие необходимые свойства, прибегают к термической обработке, которая меняет физико-механические характеристики сплавов. Иногда это промежуточный этап на стадии производства металлической продукции, иногда – конечный.

В процессе происходят важнейшие изменения в структуре металла. В зависимости от выбранного вида термообработки, будет отличаться и результат. В металлообрабатывающей промышленности с помощью таких технологий создают сплавы с уникальными характеристиками. Если назначение термической обработки – повысить податливость, пластичность, после нее металл будет легче резать, придавать ему желаемую форму.

Но некоторые операции увеличивают такие характеристики, как твердость, циклическая прочность. Кроме того, при помощи термообработки удается устранить дефекты, которые вызваны ошибками или просчетами на предыдущих производственных этапах.

Преимущества термообработки металлов

При грамотно выбранном режиме и продолжительности процедур удается добиться заданных характеристик. Термическую обработку ценят за следующие достоинства:

  • увеличивается стойкость металла к износу;
  • за счет улучшения технических показателей возрастает срок службы металлоконструкций и изделий;
  • уменьшается количество деталей, непригодных к использованию;
  • благодаря повышению прочности, долговечности и износостойкости сокращаются финансовые издержки.

Чтобы стали обрели желаемые свойства, необходимо специальное оборудование. Это высокотехнологичные печи, в которых за счет высоких температур добиваются сильного нагрева, вызывающего изменения в структуре металла. Однако для качественной термообработки важна регулировка мощности, других настроек. Поскольку каждому металлу требуется свой температурный режим. Также его подбирают под цели термической обработки – в зависимости от того, какие именно свойства нужно придать стали или цветному сплаву.

termoobrabotka.jpg

Принцип термической обработки

Хотя процессы отличаются температурным режимом, длительностью и другими тонкостями, в целом процедура протекает по одному и тому же принципу. Термическую обработку стали выполняют в следующей последовательности:

  1. Нагрев.
  2. Выдержка.
  3. Охлаждение.

Для первого этапа крайне важно точно подобрать температуру и выполнить нагрев до указанного предела. Температурный режим предопределяется тем, предстоит ли работать со сталью или с другими сплавами, какие именно свойства следует придать металлу.

Также имеет значение продолжительность выдержки. Сплавы претерпевают желаемые изменения в структуре, только когда температура держится в конкретном диапазоне в течение определенного времени.

Скорость охлаждения – не менее значимая константа. В некоторых случаях в работе со сталью при термообработке ее оставляют в печи, где она очень долго остывает вместе с оборудованием. Но иногда требуется более быстрое понижение температуры металла, чтобы в структуре не произошли нежелательные изменения. И тогда после термической обработки заготовку выставляют остывать на воздухе.

Виды термообработки стали

Имея общий алгоритм действий, предприятия выполняют термическую обработку разными способами. Располагая всего тремя инструментами – нагрев, выдержка и охлаждение, удается решать широчайший круг задач. Если одни виды термической обработки стали предназначены для увеличения ее прочности, то другие повышают пластичность и текучесть. Поэтому важен профессионализм, четкое понимание процессов, протекающих в структуре.

Отжиг

К одним из самых востребованных видов термообработки относят отжиг, который выполняют для понижения твердости и снятия внутреннего напряжения. Зачастую он необходим после горячей обработки стали давлением. Например, такой термической обработке подвергают заготовки после ковки, прокатки и штамповки. Иногда к отжигу прибегают вслед за сваркой. Он же используется, если на предыдущем этапе работы со сталью допущены ошибки и возникли дефекты.

Суть такой термической обработки заключается в нагреве выше критической точки, последующей выдержке и охлаждении. Благодаря этому структура обретает равновесность, впоследствии со сталью проще работать способом резания.

876987609.png

Закалка

Эту термическую обработку выполняют, чтобы увеличить твердость сплава. Если говорить о процессах, которые происходят со сталью, то в ее структуре вместо перлита образовывается мартенсит, проходя через стадию аустенита.

Воздействуя при помощи высоких температур на металл, сначала добиваются аустенитного превращения. Чтобы избежать промежуточную структуру, заготовку помещают в масло. Там происходит быстрое охлаждение стали до мартенситных превращений. Однако далее снижение температур должно замедлиться. Иначе распад аустенита будет неполным и не удастся при помощи термообработки придать стали желаемую твердость.

Отпуск

Такую термическую обработку осуществляют для повышения пластичности одновременно со снижением хрупкости. При этом удается сохранить высокую прочность стали. Отпуск делят на три вида, в зависимости от уровня нагрева металла. Он бывает:

  • низкотемпературным;
  • среднетемпературным;
  • высокотемпературным.

В первом случае термическую обработку выполняют, доведя сплав до 250 градусов. Преимущественно данный способ применим для закаленной стали. Также низкотемпературному отпуску подвергают инструменты из углеродистых и низколегированных металлов.

Второй вид предполагает термическую обработку стали с нагревом до 350-500 градусов. Он обеспечивает повышение упругости и выносливости. Улучшается еще одно ценное свойство – релаксационная стойкость.

Среднетемпературный отпуск протекает с охлаждением в два этапа – сначала в воде, а затем на воздухе. Благодаря этому стали придают сжимающие остаточные напряжения, что улучшает выносливость.

otpusk-stali.jpg

Высокотемпературный отпуск – это нагрев до 500-680 градусов. Благодаря данной термической обработке удается совместить высокую прочность с пластичностью и вязкостью. Подобные свойства особенно ценятся при производстве деталей, на которые будут выпадать повышенные ударные нагрузки. Например, это валы и зубчатые колеса.

Эти виды термообработки приводят к распаду мартенсита. Также в процессе происходит полигонизация и рекристаллизация.

Химико-термическая обработка

Суть подобных мероприятий заключается в нагреве и выдержке в химически активных средах. Посредством такой термообработки удается поменять химический состав, а не только структуру и свойства стали.

Процедура показана по отношению к заготовкам, в которых должна сохраняться твердость поверхности и вязкость сердцевины. Также удается повысить коррозионную стойкость и сопротивление усталости.

Химико-термическую обработку осуществляют, применяя жидкие, твердые и газообразные среды. В зависимости от того, какими веществами насыщается металл, выделяют следующие виды процедур:

  • цементация;
  • азотирование;
  • цианирование и пр.

Если термообработку совмещают с нанесением углерода, как в первом случае, сталям придают высокую прочность и сопротивление истиранию. Процесс происходит с погружением в порошкообразную смесь, в соляные ванны или в печи с цементирующими газами.

Суть азотирования заключается в насыщении стали азотом. Термообработку выполняют в печи, меняя длительность процесса, в зависимости от нужной глубины проникновения химического вещества.

azotirovanie.jpg

Цианирование предполагает насыщение углеродом и азотом одновременно. Благодаря этому сталям придают высокую твердость, стойкость к истиранию и к коррозии. Такую термическую обработку выполняют, используя цианистые соли, азотирующие газы, порошки и пасты.

Термомеханическая обработка

Данная методика сравнительно новая. Она позволяет сохранить пластичность, выполнить пластическую деформацию и упрочнить структуру.

Металл доводят до аустетинтного состояния. При быстром охлаждении начинается формирование мартенсита. В это же время выполняют наклеп аустенита – посредством прокатки, штамповки либо ковки. За счет этого и происходит улучшение физико-механических свойств стали.

В зависимости от того, какая используется температура, термомеханическая обработка бывает:

  • высокотемпературной;
  • низкотемпературной.

В первом случае превышают высшую критическую точку, приступают к пластической деформации и завершают закалкой. Во втором – сначала происходит нагрев, затем охлаждение до температуры, когда сохраняется аустенит, но еще не начинается рекристаллизация. На этой стадии осуществляют пластическую деформацию.

Криогенная обработка

Чтобы поменять свойства металлов, используют не только высокие, но и низкие температуры. Как и при термообработке, удается снять остаточные напряжения и повысить износостойкость деталей. Увеличивается твердость заготовок, их прочность. В процессе остаточный аустенит трансформируется в мартенсит. Данные мероприятия выполняют в криогенном процессоре.

D-EQccHWsAA_2Sg.jpg

Применяемое оборудование

В термических цехах встречаются разнообразные установки. Поскольку и назначение термической обработки бывает различным, возникает потребность в нескольких видах печей:

  • шахтные;
  • камерные;
  • вакуумные;
  • с выдвижным подом.

Первые называют универсальными. В них возможно выполнять термообработку разными способами. В шахтных печах размещаются заготовки любого размера. Сюда отправляют детали для нагрева перед закалкой, для отжига и отпуска, для цементации. Более того, в них работают не только со сталями, но и с цветными металлами.

В камерных печах обрабатывают преимущественно заготовки среднего и мелкого размера. Их устанавливают на различных предприятиях и в качестве самостоятельных единиц, и в составе автоматизированного комплекса.

В вакуумных печах, помимо термической обработки, можно выполнять пайку, спекание материалов. Оборудование ценят за то, что оно в точности придерживается заданных технологических параметров. Температура не откланяется от нужного предела больше чем на 5 градусов. Такие печи используются для термической обработки конструкционной стали. В них проходят разнообразные процедуры титановые сплавы, тугоплавкие металлы.

Печи с выдвижным поддоном особенно удобны, когда необходимо обработать очень крупную деталь либо узел. Для загрузки и выгрузки стали обычно используют специальные краны и кран-балки. Однако оборудование этого типа имеет существенные недостатки. Во-первых, оно громоздкое, поэтому не на каждом предприятии найдется пространство для его установки. Во-вторых, из-за специфики конструкции высоки теплопотери.

pech-s-poddonom.jpg

В основном печи с выдвижным поддоном применимы для отжига сварных конструкций. В них доводят заготовки крупных габаритов до аустенитного состояния. Еще один способ применения – подготовка для ковки.

Особенности термообработки цветных сплавов

Цветные металлы требуют особого подхода к обработке, в отличие от работы со сталями. Индивидуальный подход обусловлен особенностями строения кристаллической решетки. Режим и характер воздействия подбирают также с учетом теплопроводности, химической активности. Но многие процессы с цветными металлами протекают в тех же печах, где обрабатывают стали.

Завод металлоконструкций ЧЗМК подвергает термической обработке различные стали, цветные металлы. Для этого предприятие оснащено разнообразным современным оборудованием. Высокая квалификация и профессионализм специалистов служат залогом превосходного результата.

7 областей применения самого легкоплавкого металла

Самый легкоплавкий металл: разбор понятия + обзор 7 элементов группы легкоплавких металлов + обзор, какой металл считается самым легкоплавким + область применения материала в промышленности и быту.

samyj-legkoplavkij-metall

У каждого элемента из группы металлов имеются уникальный перечень физических и химических свойств, благодаря которым те могут служить на благо человечества. Температура плавления – отнюдь не последний показатель в данном вопросе.

Если речь о металлических элементах, то здесь происходит преобразование из твердого состояния в жидкое при достижении пикового значения по температуре.

Сегодня мы разберем самый легкоплавкий металл и его ближайших соседей по характеристике – рассмотрим свойства, особенности и области применения элементов периодической системы в промышленности и повседневной жизни человека.

Суть понятия самого легкоплавкого металла

Для специалистов больше знакомо понятие «тугоплавкость». Хотя слово «легкоплавки» и является антонимом в языковом аспекте, на практике – это один из пунктов к общей классификации в промышленности. По своей сути, любой элемент, имеющий температуру плавления менее 600 градусов по Цельсию, называют легкоплавким. Некоторые источники ставят планку вхождения в группу еще ниже – до 500 градусов Цельсия.

Классификация металлов по плавкости:

    легкоплавкие. Температура плавления элементов обязана быть ниже 600 градусов по Цельсию;

legkoplavkie-metally

sredneplavkie-metally

Процесс плавления одинаковый для всех металлических элементов – либо внешнее воздействие, либо внутреннее. В первом случае – это расплавка в печах, а во втором – разогревание через пропуск электрического тока сквозь металл. Иногда используется индукционный нагрев в электромагнитном поле с высокой частотой.

Процесс плавки металла через призму науки:

  1. Разогрев до температуры плавления.
  2. Увеличение амплитуды тепловых колебаний молекул внутри металла.
  3. Возникновение дефектов в структуре решетки материала.
  4. Межатомные связи разрываются + параллельно затрачивается энергия.
  5. Образование на поверхности квазижидкого слоя.
  6. Постепенное разрушение решетки и накопление дефектов, что и принято называть процессом плавления.

В зависимости от температуры плавления, выбирают аппараты из сплавов, способных выдержать пиковые значения. Для легкоплавких металлов вопрос решается проще всего.

Второй весомый параметр – температура кипения металла. В 95% случаев она в 2 раза выше температуры плавления. Между собой эти две величины являются прямо пропорциональными + при снижении/увеличения давления на материал, снижается и его показатели плавления с кипением.

ТОП легкоплавкости + области применения

Обратите внимание: легкоплавкие сплавы состоят из соответствующих металлов, но пиковая температура плавления таких элементов не должна превышать 232 градуса.

Если взглянуть на таблицу легкоплавких металлов выше, мы поймем, что граничным материалом будет именно олово. Все остальные легкоплавкие металлы, температура плавления которых выше, как легирующие добавки используются редко.

1) Обзор группы легкоплавких металлов промышленного назначения

Широчайшее применение имеет 9 легкоплавких материалов – цинк, свинец, кадмий, таллий, висмут, олово, индий, галлий и ртуть. Далее мы по каждому из элементов подадим краткую характеристику + область применения в быту и промышленности человеком.

А) Цинк (Zn)

legkoplavkij-metall-cink

Распространенность ★★★★★ (5.0 из 5.0) Общая привлекательность в промышленности
★★★★★
4.5
Стоимость ★★★★(4.0 из 5.0)
Применение ★★★★(4.0 из 5.0)

Первые упоминания цинка в неявном виде пришли к нам из древней Греции и Египта – он там был составляющим элементом латуни. Первое промышленное изготовление цинка было запущено в 1743 году в городе Бристоле, а в 1746 был разработан метод получения металла путем прокаливания окиси смеси с углем без доступа кислорода с дальнейшим охлаждением паров в холодильном оборудовании.

Химические и физические свойства цинка:

  • металл серебристо-белого цвета с высоким показателем пластичности при температуре от 100 до 150 градусов;
  • при комнатной температуре у металла повышенная хрупкость. Даже незначительные сгибания приводят к возникновению хруста;
  • температура плавления от 419 градусов Цельсия;
  • вкрапления примесей пропорционально повышают хрупкость цинка;
  • металл образовывает амфотерные соединения;
  • при воздействии воздуха, поверхность цинка окисляется с образованием пленки.

В природе существует 65+ минералов с содержанием цинка. В земной коре металл содержится на уровне 8*10^(-3) %. В воде цинк также присутствует и активно мигрирует в термальных потоках на ровне со свинцом. Крупнейшие месторождения цинка – Иран, Австралия, Боливия и Казахстан.

Область применения цинка:

  • в качестве антикоррозийного покрытия железа/стали;
  • как добавка в аккумуляторах и элементах питания сухого типа;
  • типографское дело открыто для листового цинка;
  • как компонент сплавов в полупроводниках.

Физиологическая ценность цинка заключается в его катализирующих свойствах. Элемент является составляющей инсулина, а его поступление в организм обеспечивается через молоко, мясо и яйца. Недостаток цинка в почве приводит к возникновению болезней растений. В чистом виде металл мало токсичен.

В) Свинец (Pb)

legkoplavkij-metall-cvinec

Распространенность ★★★★★ (5.0 из 5.0) Общая привлекательность в промышленности
★★★★
4.0
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★(3.0 из 5.0)

На внешний вид, плюмбум – металл серебристого цвета с беловатым и голубоватым оттенками. Из-за широкого распространения и просты в обработке, свинец использовался еще с древних времен (датируется 6 400 лет до н. э.). Промышленная отладка производства свинца началась в 1840 году, а к концу 20-го века уровень его добычи снизился из-за понижения спроса. Металл начали замещать другими материалами, которые менее опасны для здоровья человека.

Физические свойства Химические свойства
Низкая теплопроводимость – 35 Вт/(м*к), но это при температуре в 0 градусов. При взаимодействии с кислородом получаем оксиды.
Высокая пластичность материала. Изделия из олова не составит труда поцарапать, разрезать ножом или согнуть. Хороший реагент для кислот.
Плавится при температуре в 328 градусов, а закипает при нагревании до 1750 градусов. Взаимодействует с растворами щелочей.
Расположен в группе тяжелых металлов. Изначальная плотность в 11.34 грамма на сантиметр кубический постепенно падает по мере повышения температуры в окружении. Некоторые соединения на основании свинца обладают повышенными кислотными свойствами, что переводят вещество в разряд окислителей.
При достижении точки температуры в 7.26 кельвина становится сверхпроводником.

В основе производства свинца руды с галенитом. Через флотацию формируют концентрат с 50%-80% чистого вещества, а далее одним из 4 методов получают черновой свинец. Основными добытчиками свинца является США, Китай и Россия.

Где применяют свинец:

  • нитрат свинца как компонент взрывчатки;
  • черная промышленность, как компонент тяжелых жидкостей по обогащению руд;
  • катодный материал в источниках тока химического типа;
  • теллурид свинца используется как термоэлектрический материал;
  • как основа для свинцовых аккумуляторов и других источников выработки питания;
  • компонент шпаклевки и некоторых типов краски;
  • как присадка к бензину для повышения октанового значения.

В медицине свинец применяется как защитник от излучения в рентгеновских аппаратах. Стоимость одного килограмма свинца более чем приемлема – 2-3 доллара. Нельзя забывать и о токсичности химического элемента. Хотя сам по себе свинец и не токсичен, того нельзя сказать о массе его производных соединений.

С) Кадмий (Cd)

legkoplavkij-metall-kadmij

Распространенность ★★★★(4.0 из 5.0) Общая привлекательность в промышленности
★★★★
4.0
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★(3.0 из 5.0)

Очередной мягкий и ковкий металл с проявлением тягучих свойств. По расцветке – это серебристо-белое вещество. С древних времен не распространялся. Открыт только в 1817 году немцем Штромейером. Название придумано тем же человеком, и происходит от руды, с которой добывали на то время цинк. Массовая доля кадмия в отношении массы земной коры составляет 130 миллиграмм на тонну. В воде элемент также присущ – от 0.11 микрограмма на литр. В природе имеется всего 6 минералов с содержанием кадмия, но из-за их широкого распространения, вещество по частоте проявления приравнивают цинку.

Физические свойства кадмия:

  • треск при сгибании, образовывающейся из-за кристаллической структуры металла;
  • температура плавления составляет 321 градус, а кипения – 770 градусов;
  • при добавлении примесей, кристаллическая структура полученного сплава упрощается;
  • твердость выше, чем у олова, но мягче цинка – это позволяет нарезать бруски металла ножом;
  • при достижении температуры нагрева кадмия выше 80 градусов, металл теряет свойства упругости. При небольших усилиях превращается в порошок.

Почти 40% кадмиевого производства отправляется для создания антикоррозийных покрытий на другие сплавы. Кадмирование относится к электролитическим процедурам и один из лучших способов сделать детали с инструментами менее восприимчивыми к коррозии. Порядка 20% элемента используют в качестве добавки в красящие вещества. Из прочих областей применения – пленочные солнечные батареи, компонент полупроводников, пайка алюминия и криогенная техника. В больших концентрациях соединения на основе кадмия ядовиты.

D) Таллий (Tl)

legkoplavkij-metall-tallij

Распространенность ★★★★(4.0 из 5.0) Общая привлекательность в промышленности
★★★
3.0
Стоимость ★★★★(4.0 из 5.0)
Применение ★★(2.0 из 5.0)

Таллий относится к группе легкоплавких металлов – температура плавления от 304 градусов, а кипения – от 1473 Цельсия.

Открытие металла произошло в 1861 году англичанином Круксом через спектральный метод, а название получено из-за зеленых линий спектра. Дословно Таллий переводится с греческого как «зеленая ветвь». Таллий относится к элементам рассеянного типа. Существует только 7 минералов с содержанием частичек металла в неявном виде. Среднее содержание в рамках земной коры – 3.5*10 в (-5) степени.

  • амальгама таллия благодаря низкой температуре плавления используется как теплоноситель в термометрах;
  • при кардиологических исследованиях в медицине;
  • в инфракрасной оптике как материал для линз;
  • добавка в металлогалогеновые лампочки;
  • в минералогии для выявления свойств минералов;
  • в отдаленных уголках планеты используется как отрава против грызунов в труднодоступных местах.

Из физических свойств выделим сверхпроводимость при температуре выше 2.39 Кельвина, твердость по Моосу в 1.3 (по Бриннелю 20 МПа). По химии – реакции с неметаллами, хорошая растворимость в азотной и серной кислотах + инертность в отношении реакции с щелочами. Значительной биологической роли в жизнедеятельности человека талий не играет. Металл относится к ядам кумулятивного типа, а при больших концентрациях вещество способно вызвать поражения почек, нервной системы и желудочно-кишечного тракта.

E) Висмут (Bi)

legkoplavkij-metall-vismut

Распространенность ★★★(3.0 из 5.0) Общая привлекательность в промышленности
★★★★
4.0
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★★(4.0 из 5.0)

Красивый металл, который в прошлых веках использовали для ковки красивого, переливающегося оружия – сабли, основа винтовок и так далее. Впервые о висмуте, как отдельном химическом элементе, упомянули в 1546 году, но официально металл признали только в 1739 году. Спустя целых 80 лет Берцелиус ввел элемент в периодическую систему. В поверхности земной коры висмут содержится в количестве 2*10 в (-5) % по массе. В руде содержится как чистый элемент, что существенно упрощает процесс его добычи. Промышленная добыча висмута (около 85%) происходит как попутный продукт от переработки медных, оловянных, свинцовых и прочих типов руд.

Физические свойства висмута:

  • 8 кристаллографических модификаций;
  • при переходе из твердого состояния в жидкое, наблюдается повышение плотности вещества;
  • удельное электрическое сопротивление растет с повышением температуры;
  • низкая теплопроводимость – 7.9 Вт/(м*К);
  • температура плавления 271 градус, а кипения – 1837 Кельвина;
  • модуль упругости составляет от 33 до 35 ГПа, а модуль сдвига – 12.5 ГПа;
  • в комнатной температуре металл имеет хрупкую структуру, но при повышении до 160-230 становится пластичным.

Висмут относится к редким металлам. Ежегодная добыча в чистом виде едва ли достигает отметки к 6 200 тонн ежегодно. Основные поставщики вещества на мировой рынок – Германия, Монголия, Австралия, Перу и Россия. Цена на металл непостоянна и меняется от уровня спроса. В 2020 году, к примеру, 1 килограмм висмута можно приобрести за 12$.

F) Олово (Sn)

legkoplavkij-metall-olovo

Распространенность ★★★★(4.0 из 5.0) Общая привлекательность в промышленности
★★★★
4.0
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★★(4.0 из 5.0)

История олова начинается еще с 4 века до нашей эры, но в чистой форме вещество было получено только в 21 веке. Происхождение названия металла – чисто славянское. Температура плавления олова составляет 231 градус, а кипения – 2 620 по Цельсию. Разница между показателями более чем заметна. Модуль упругости 55 ГПа, а временное сопротивление на разрыв – 20 МПа. Твердость по Бринеллю 152 МПа у белого и 62 МПа у серого олова. Температура литья – 260-300 по Цельсию.

Область применения олова:

  • как вариант антикоррозийного покрытия в сплаве или чистом веществе. Примерами таких сплавов является белая жесть, бронза и пьютер. Последний особо популярен в производстве посуды;
  • как составляющий компонент красок;
  • гамма-резонансная спектроскопия;
  • важный легирующий компонент при производстве титана;
  • двуокись олова используется как абразивный материал;
  • как анодный материал в химических источниках тока.

Олово относят к рассеянным редким элементам. В земной коре его процент разнится – от 2 до 8 умноженное на 10 в (-3) степени. Основным минералом для добычи олова считается касситерит, в котором содержится почти 80% чистого вещества. На втором месте – станнин, который более известен как оловянный колчедан (30%). Основные месторождения металла – Китай и Юго-восточная Азия. Достоверной информации о физиологическом воздействии олова на организм пока не имеется, но передозировки могут привести к отравлению и хроническим заболеваниям легких.

G) Индий (In)

legkoplavkij-metall-indij

Распространенность ★★(2.0 из 5.0) Общая привлекательность в промышленности
★★★
3.0
Стоимость ★★★(3.0 из 5.0)
Применение ★★★★(4.0 из 5.0)

Металл был открыт двумя немцами Рейхом и Рихтером в 1863 году. Многие могут предположить, что название сродни одноименной стране на карте мира, но на самом деле свое обозначение металл получил из-за синего цвета (индиго) линий в спектре. Вещество в природе можно добыть из 5 минералов, а его общая доля в отношении земной коры составляет всего 10 в (-5) степени, что делает вещество в чистом виде как редким, так и дорогим (от 100 долларов за 1 килограмм).

Где применяется индий:

  • оксидно-оловянная пленка незаменимый компонент ЖК экранов;
  • в качестве акцепторной примеси в микроэлектронике;
  • как компонент в легкоплавких припоях;
  • для покрытия зеркал. Отображающие свойства индия ничуть не хуже нежели у серебра;
  • основа для фотоэлементов;
  • входит в состав «голубого золота»;
  • в условиях вакуума используется как уплотнитель.

Температура плавления металла составляет 157 градусов, а кипения – 2072 градуса. Критическая температура для возникновения сверхпроводимости составляет 3.404 К. Твердость по Бринеллю 9 МПа, а по Моосу 1.2. Производство индия происходит из отходов цинка, реже свинца и олова. Ярко выраженной биологической роли металл для человека не имеет.

2) Какой самый легкоплавкий металл + область его применения

А) Ртуть – ТОП-1 по легкоплавкости в мире

Для большинства людей ртуть знакома с самого детства – ртутные градусники до сих пор считаются точнейшим методом измерения температуры тела человека. В комнатной температуре (да и вообще при «+»), металл имеет расплавленную форму. Переход в твердую форму происходит при понижении температуры окружения до -39 градусов – это температура плавления чистого вещества.

legkoplavkij-metall-rtut

В исторической справке металл известен с древности. Впервые чистую ртуть химическим путем получили в 1735 году. Сделал это швед-химик Брандт. По уровню распространения в природе, ртуть имеет концентрацию в 83 мг/тонну. Концентрация чистого вещества в ртутных рудах сравнительно высока и может достигать 2.8%-3%. В природе известно порядка 20 минералов с содержанием чистого вещества.

rtut-temperatura-plavkosti

Плотность ртути меняется в зависимости ото температуры окружения. В нормальных условиях, при комнатной температуре – то 13 550 килограмм на метр кубический. Температура кипения чистого элемента составляет 357 градусов. Имеет диамагнетические свойства + способен образовывать с прочими металлами сплавы твердого и жидкого типов. В химическом плане ртуть малоактивная.

Области применения ртути:

  • как консервант для некоторых медпрепаратах;
  • рабочее тело в ртутных термометрах;
  • люминесцентные лампы могут заполняться ртутными парами;
  • элемент датчиков положения;
  • внедрение в некоторые типы красок. Например, чтобы не дать части корабля под водой обрасти морскими растениями;
  • легирующий материал для множества сплавов;
  • катод в электролитических методах получения металлов.

Все соединения ртути, как и сам материал ядовиты, потому, широкого распространения элемент в промышленности и быту человека не приобрел. В 21 веке направления использования ртути можно с успехом заменить на более безопасные элементы. Да, чуть дороже, но здоровье превыше всего.

Развернутая информация о самом легкоплавком металле на земле:

Б) Галлий (Ga) – металл, тающий в руках

Если говорить о наглядности, то обойти стороной рассматриваемый металл нереально. Температура тела человека 36.6, а галлий тает при температуре в 29.8 градуса. То есть, если взять металл в руки, он начнет растекаться – забавное зрелище. Существование элемента было предсказано самим Менделеевым, но впервые выделить металл удалось только в 1875 году Де Буабодраном.

legkoplavkij-metall-gallij

На тонну земной коры приходится порядка 19 грамм галлия. Металл является типичным рассеянным химэлементом у которого двойная геохимическая природа. В чистой форме встретить металл нельзя, но в отношении количества минералов с его содержанием, может дать фору многим. Основными месторождениями галлия является страны Юго-Западной Африки, Россия и некоторые страны СНГ.

Где применяется галлий:

  • почти 97% добываемого галлия уходит на получение соединений полупроводникового типа;
  • как «холодная пайка» в радиоэлектронике для металла и керамики;
  • как легирующий компонент;
  • в получении зеркал оптического типа;
  • как замена ртути в выпрямителях электрического тока.

Элемент относится к малотоксичным веществам + биологически важной роли в жизни человека не имеет. Хотя галлий и не самый легкоплавкий металл, его поведение в руках человека многих вводит в заблуждение.

Существуют и другие участники ряда металлов таблицы Менделеева с небольшой температурой плавления, но из-за их малой области применения, рассматривать в рамках нашего сайта их просто нет смысла.

Технология выплавки стали в основных электродуговых печах

Технология плавки стали в дуговых печах определяется составом выплавляемой стали и предъявляемыми к ней требованиями, а также качеством шихты. В зависимости от этих факторов технология плавки даже в одной печи может быть существенно различной.

Имеются две основные разновидности технологии плавки легиро­ванной стали: плавка на углеродистой («свежей») шихте и плавка переплавом легированных отходов.

Углеродистая шихта характеризуется повышенным содержанием углерода, фосфора, серы и отсутствием или незначительным коли­чеством легирующих элементов. Для передела такой шихты в ка­чественную сталь требуется проведение специального окислитель­ного периода, в течение которого окисляются углерод, фосфор и не­ которые сопутствующие элементы: кремний, хром, марганец, вана­дий и др.

Наличие окислительного периода является характерной особен­ностью технологии плавки на свежей шихте, поэтому ее называют еще плавкой с полным окислением.

Плавка высококачественной стали на свежей шихте включает следующие этапы:

  • подготовку шихтовых материалов,
  • подго­товку печи к плавке,
  • загрузку шихты,
  • период плавления,
  • окислительный период,
  • восстановительный период.

Выплавка рядовой стали проводится по упрощенной технологии под одним шлаком с интенсивным использованием кислорода и харак­теризуется отсутствием восстановительного периода.

Проведение всех периодов плавки позволяет глубоко очистить металл от вредных примесей — фосфора и серы. Окисление угле­рода в окислительный период вызывает кипение ванны и способ­ствует дегазации металла — удалению растворенных в нем водорода и азота. Поэтому плавка с полным окислением позволяет получать из рядовой шихты высококачественную сталь. Недостаток этого метода плавки заключается в потере некоторых содержащихся в шихте легирующих элементов (хрома, ванадия и др.) и большей продолжительности плавки.

При плавке методом переплава окислительный период исключают из суммарного процесса плавки, в результате чего некоторые из содержащихся в шихте легирующих элементов не окисляются и остаются в стали. Это позволяет полнее использовать легирующие элементы, содержащиеся в отходах, и уменьшить расход ферро­сплавов.

Продолжительность плавки методом переплава меньше, чем на свежей шихте, соответственно выше производительность агрегата, меньше расход электрической энергии. Себестоимость стали, вы­плавленной методом переплава, меньше себестоимости той же стали, выплавленной на свежей шихте.

Однако отсутствие окислительного периода делает невозможным удаление фосфора, поэтому для плавки методом переплава требуется чистая по фосфору шихта. Кроме того, отсутствие кипения ванны не позволяет удалять в течение плавки растворенные газы, что тре­бует принятия дополнительных мер для их удаления.

На плавках методом переплава для ускорения нагрева металла, понижения в нем содержания углерода и растворенных газов ванну часто продувают газообразным кислородом. В результате экзотер­мических реакций кислорода с железом, кремнием и углеродом тем­пература ванны быстро повышается, хром и другие легирующие элементы при этом окисляются незначительно, а выделяющаяся окись углерода оказывает дегазирующее действие. Такую разно­видность технологии переплава называют плавкой с частичным окислением.

Подготовка печи к плавке

Огнеупорная футеровка печи изнашивается и для поддержания ее в рабочем состоянии необходимо регулярно ремонтировать наи­более пострадавшие участки ее. Поэтому после каждой плавки печь тщательно осматривают, подину прощупывают железным штырем, выявляют все поврежденные места и принимают меры по устранению обнаруженных разрушений.

Сразу же после выпуска плавки печь необходимо очистить от остатков шлака и металла. Систематическое накопление остатков шлака на подине приводит к ее зарастанию и уменьшению объема ванны, в результате чего уровень зеркала металла поднимается, а это затрудняет ведение процесса (металл труднее перемешивать, печь нельзя наклонять для схода шлака самотеком) и увеличивает
опасность прорыва металла через откосы или порог рабочего окна. Кроме того, шлак, смешиваясь с заправочными материалами, пони­жает их огнеупорность и способствует размягчению футеровки при высоких температурах.

Наличие остатков металла на подине также недопустимо, особенно при переходе на выплавку стали другой марки или при плохом состоя­нии подины. В случае смены марки выплавляемой стали остатки металла могут явиться причиной непопадания в заданный состав металла, например по никелю, хрому, молибдену и т.д. Наличие остатков не дает также возможности проводить качественный ре­монт подины, так как оно препятствует свариванию заправочных материалов с футеровкой. После расплавления металла заправочный материал всплывает, и это приводит к загущению шлака и дальнейшему разрушению подины.

При значительных повреждениях подины, когда удаление остат­ков металла становится затруднительным, следует очистить задний откос, заправить его и наклонить печь в сторону разливочного пролета.

После застывания металла на заднем откосе печь необходимо поставить в нормальное положение и приступить к очистке. После заправки печи удаляют замороженный металл.

Остатки шлака и металла удаляют металлическими скребками вручную. Это очень тяжелая операция, тем более, что ее выполняют под прямым тепловым излучением футеровки и по возможности быстро, пока шлак и металл не застыли, а футеровка достаточно разогрета для сваривания с заправочным материалом.

В печи сохраняется меньше остатков шлака и металла, если футеровка постоянно поддерживается в хорошем состоянии, откос в районе выпускного отверстия достаточно пологий и хорошо раз­делывается выпускное отверстие.

Для более полного слива шлака перед выпуском плавки его целесообразно разжижать.

В случае сильного зарастания подины для восстановления ее прежних размеров специально назначают плавку стали неответ­ственной марки, выплавляемой с полным окислением. На подину заваливают руду и в окислительный период проводят интенсивное кипение, что приводит к размыву футеровки и восстановлению раз­меров ванны.

Поврежденные участки футеровки после удаления остатков шлака и металла заправляют. Поврежденные места подины и откосов заправляют сухим магнезитовым порошком, а места наибольших повреждений — порошком, смоченным в жидком стекле. Наиболее пригоден для заправки специальный мелкозернистый порошок при размере зерна 0—1,5 мм без включений извести и доломита (белые и серые зерна). В состав заправочных смесей иногда включают раз­молотый бывший в употреблении магнезитовый кирпич. Для заправки печей, в которых выплавляют хромистые стали, в состав заправочных смесей может входить хромистая руда и молотый хромомагнезито­вый кирпич.

После значительного ремонта подины для ее закрепления следует провести плавку без окисления при сравнительно низкой тепловой нагрузке.

Заправку печей небольшой емкости осуществляют, как правило, вручную лопатами, а передний откос — специальной ложкой. Для механизированной заправки средних и крупных печей предложено несколько конструкций заправочных машин. В рабочее простран­ство печи машины опускают краном сверху либо вводят через рабо­чее окно.

Следует, однако, отметить, что механизированной заправке свойствен ряд недостатков и оптимальный способ механизации этого процесса пока не найден. Одни машины (например, дисковые, пнев­матические, разбрасывающие порошок из мульды) не обеспечивают избирательного ремонта отдельных участков, разбрасывая равно­мерно порошок по всему периметру печи. В результате расход маг­незита увеличивается, а поврежденные места приходится дополни­тельно заправлять другими способами, часто даже вручную. Другие (пневматическая, забирающая порошок из бункера) обеспечивают локальность ремонта, но сжатый воздух сильно охлаждает футеровку, особенно там, куда подается заправочный материал и где для его сваривания с футеровкой требуется высокая температура.

После заправки следует тщательно осмотреть стены и свод печи и выполнить необходимый ремонт.

При назначении марки стали для выплавки необходимо учитывать состояние футеровки печи. К концу ее кампании нельзя назначать выплавку стали, осуществляемую с повышенной тепловой нагруз­кой как по температурному режиму, так и по продолжительности.

При значительном расхождении составов предыдущей и предстоя­щей плавок нужно назначить плавку стали промежуточного состава. Выплавку легированной конструкционной стали можно осуществлять начиная с третьей, а стали ответственного назначения — с пятой плавки после полного ремонта стен.

Завалка (загрузка) шихты в печь

На современных электропечах загрузка шихты осуществляется сверху при помощи загрузочных бадей. Старые печи загружают, пользуясь мульдами. В первом случае вся шихта загружается в один-два приема и независимо от емкости печи длительность загрузки составляет 5— 10 мин. Длительность завалки в случае использования мульд зависит от насыпной массы шихты и емкости печи. Завалка мульдами печи емкостью 40 т продолжается 40—50 мин. Для убы­стрения завалки, когда представляется возможным, старые печи реконструируют и переводят на завалку сверху.

Быстрая завалка позволяет сохранить тепло, аккумулированное кладкой печи, в результате чего сокращается продолжительность плавления, уменьшается расход электроэнергии и электродов и уве­личивается стойкость футеровки.

При завалке сверху порядок укладки шихты в бадье предопределяет расположение ее в печи. Для предохранения подины от уда­л и в крупных падающих кусков на дно бадьи желательно загружать небольшое количество мелкого лома. Наиболее крупную шихту догружают вперемежку с шихтой средних размеров в центральную часть бадьи так, чтобы в печи крупные куски оказались непосредственно под электродами. По периферии распределяют куски средих размеров, а сверху засыпают мелочь.

Такая последовательность загрузки бадьи обеспечивает наиболее плотную укладку шихты в печи, что очень важно для стабильного горения дуг. Наличие сверху мелочи обеспечивает в начале плавле­ние быстрое погружение электродов и исключает прямое воздействие излучения дуг на футеровку стен, а присутствие в шихте под элек­тродами крупных кусков замедляет проплавление колодцев и исклю­чает возможность погружения электродов до подины раньше, чем накопится слой жидкого металла, защищающий подину от прямого воздействия дуг.

Для достижения оптимальной укладки шихта должна состоять 35—40% из крупного лома, 40—45% среднего и 15—20% мелкого, причем примерно половину мелочи нужно загружать вниз, а вторую половину -поверх остальной завалки.

При наличии в шихте легирующих элементов их надо располагать таким образом, чтобы обеспечивалась максимальная скорость их плавления и минимальный угар. Тугоплавкие металлы, такие как ферромолибден или ферровольфрам, следует загружать в централь­ную часть бадьи. Легкоплавкие металлы, например никель, в зоне дуг интенсивно испаряются. Для уменьшения потерь их целесообразно загружать ближе к откосам.

Содержание углерода в шихте должно быть на 0,4—0,6% выше нижнего предела в стали заданной марки. Недостающее количество в шихте углерода вводят используя для этого соответствующие присадки углеродсодержащих материалов — чугун, кокс и электрод­ный бой. В результате введения чугуна в металле увеличивается содержание фосфора, поэтому чугуном пользуются только на плавках с полным окислением и дозируют его в количестве не более 20% от массы шихты. Чугун характеризуется низкой температурой плавления, поэтому его загружают вместе с мелким ломом поверх всей завалки. Кокс и электродный бой для лучшего усвоения за­гружают поверх первой порции мелкого лома.

Для раннего образования шлака, предохраняющего металл от окисления, и для дефосфорации в процессе плавления в завалку вводят известь в количестве 2—3%. В зависимости от состояния подины известь загружают либо на подину, либо после на часть ранее загруженной металлической шихты. Для дефосфорации ме­талла уже в период плавления на плавках с полным окислением в завалку дают 1,0— 1,5% железной руды. При зарастании подины руду засыпают непосредственно на подину, в остальных случаях ее загружают в бадью поверх части металлической шихты.

В случае мульдовой завалки последовательность загрузки должна обеспечивать такой же порядок распределения шихты в печи, как и при бадьевой загрузке. С целью сокращения длительности загрузки ее целесообразно осуществлять двумя завалочными машинами.

Плавление шихты

Главная задача этого периода плавки — как можно быстрее перевести металл в жидкое состояние.

Длительность периода плавления зависит от емкости печи, уста­новленной мощности трансформатора, состава выплавляемой стали, электрического режима и ряда других факторов. Абсолютная про­должительность этого периода изменяется от одного до четырех часов, что составляет одну-две трети длительности всей плавки. В большинстве случаев это самый продолжительный период плавки. Учитывая отсутствие каких-либо технологических ограничений в фор­сировании плавления шихты, следует признать, что в сокращении плавления имеются большие резервы увеличения производитель­ности печей. Технически обоснованной является длительность плавле­ния в печах любого тоннажа, не превышающая 1,0—1,5 часов.

Большое тепловосприятие ванны в период плавления позволяет в этот период работать с максимальной мощностью и при максималь­ном напряжении на дуге (в рациональных, конечно, пределах). Лишь в самом начале плавления, когда дуги открыты и расположены высоко (рисунок 1, а), излучение длинных дуг может привести к пере­греву футеровки свода и стен. Поэтому в первые минуты рекоменду­ется применять более низкое напряжение. После образования ко­лодцев дуги оказываются экранированными шихтой, что позволяет перейти к плавлению при максимальных напряжении и мощности.

Работа на самой высокой ступени напряжения в период плавления целесообразна по двум причинам. Во-первых, чем выше напряжение, тем при той же мощности меньше сила тока и тем меньше потери в цепи, т. е. тем выше электрический к.п.д. Во-вторых, чем выше напряжение, тем длиннее дуга и тем на большую поверхность шихты распространяется ее излучение.

Если шихта подобрана и уложена правильно, то расположенная сверху мелкая шихта быстро проплавляется и дуги погружаются в шихту, не оказывая на футеровку заметного воздействия. В этом случае расплавление с самого начала можно вести на максимальной мощности.

Дуги прожигают в твердой шихте колодцы диаметром на 30—40% больше диаметра электродов. В процессе прожигания колодцев тепловосприятие шихты максимально, так как дуга горит непосред­ственно в твердой шихте, а боковое излучение дуг воспринимается стенками колодцев. Через 30—40 мин, считая от начала плавления, электроды опускаются в крайнее нижнее положение — до поверх­ности скопившегося на подине жидкого металла (рисунок 1, б). С этого момента скорость плавления несколько замедляется, так как тепло аккумулируется в основном жидким металлом, он перегревается и в нем растворяется твердая шихта. Лишь небольшая часть тепла дуги передается твердой шихте излучением на стенки колодцев.

Этапы плавления шихты

а — начало плавления, б — проплавление колодца; в — конец плавления

Рисунок 1 – Этапы плавления шихты

Для более быстрого расплавления шихты после прожигания колодцев современные крупные печи оборудуют механизмом вра­щения ванны. Это позволяет прожигать не три, а девять колодцев, в результате чего скорость плавления на вращающихся печах выше, чем на печах со стационарной ванной. Однако усложнение конструк­ции печи, перерывы в ее работе, вызываемые подъемом электродов и свода на время вращения ванны, а также большие тепловые по­тери, связанные с охлаждением свода и электродов, ставят под сом­нение целесообразность вращения ванны.

Ускорение плавления шихты вне зоны действия дуг может быть достигнуто применением газо-кислородных горелок. При их исполь­зовании продолжительность плавления и расход электроэнергии сокращаются примерно на 15—20%, хотя общий расход топлива на плавку несколько увеличивается. Положительный экономический эффект достигается вследствие более низкой стоимости топлива по сравнению со стоимостью электроэнергии и электродов, а также в результате увеличения производительности печи.

Водоохлаждаемые газо-кислородные горелки в рабочее простран­ство вводят либо тангенциально и под углом примерно 15° к горизонту через отверстия в стенах либо через свод (рисунок 2). Тангенци­альное расположение горелок менее удобно, так как они быстро забрызгиваются шлаком. Сводовые горелки в окислительный период используют как фурмы для вдувания кислорода. В период плавле­ния для предотвращения чрезмерного окисления шихты соотноше­ние между кислородом и газом поддерживается в пределах 1,0— 1,5.

Для сокращения периода плавления на некоторых заводах практи­куют предварительный подогрев шихты в бадьях до 400—700°С газо-кислородными горелками. Удельные энергетические затраты на плавку в стоимостном выражении могут быть при этом снижены на 15—25%. Однако этот процесс широкого распространения не получает из-за трудностей его осуществления в крупных высоко­ производительных цехах.

Схема расположения боковых (а) и сводовых (б ) газокислородных горелок

Рисунок 2 – Схема расположения боковых (а) и сводовых (б ) газо-кислородных горелок

Широко пользуются интенсификацией в период плавления при помощи газообразного кислорода, вводимого через водоохлаждае­мую фурму или футерованные трубы (d = 3/4″) непосредственно в жидкий металл. Выделение значительного количества тепла при окислении железа, марганца, кремния, углерода и других примесей способствует быстрому повышению температуры жидкого металла (таблица 1) и растворению в нем оставшейся шихты.

Таблица 1 – Тепловой эффект и расчетное повышение температуры ванны при окислении 1% элемента газообразным кислородом

ТЕПЛОВОЙ ЭФФЕКТ И РАСЧЕТНОЕ ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ ВАННЫ ПРИ ОКИСЛЕНИИ 1% ЭЛЕМЕНТА ГАЗООБРАЗНЫМ КИСЛОРОДОМ

Чем раньше начать продувку, тем больше интенсивность пла­вления, но вместе с тем и больше угар железа и окисляемых элемен­тов. Применение кислорода для интенсификации оправдано, если стоимость кислорода и повышенный угар компенсируются экономией от ускоренного плавления.

В период плавления кислород целесообразно также применять для подрезки шихты. В процессе плавления отдельные куски шихты свариваются между собой, образуя мосты. При растворении нижних кусков может произойти обвал шихты и вызвать поломку электродов. Часть шихты застревает на откосах и не растворяются в жидкой ванне, а ее расплавление требует значительного времени. И в том и в другом случае необходимо шихту периодически обваливать. Обычно это делается с помощью завалочной машины, но при этом печь прихо­дится отключать, поднимать электроды и через рабочее окно вводить на хоботе завалочной машины мульду и, пользуясь ею, обваливать шихту.

Эта операция значительно упрощается при подрезке шихты кисло­родом. Для этого струю кислорода направляют под основание за­стрявших кусков шихты, они оплавляются и шихта погружается в расплавленный металл.

В процессе плавления происходит окисление примесей, вносимых шихтой. Практически полностью окисляются алюминий, титан, кремний, значительное количество хрома, марганца и других примесей. С целью сокращения длительности окислительного периода в период плавления целесообразно создавать условия, благоприят­ные для окисления фосфора. Для этого количество руды и извести в завалку надо рассчитывать таким образом, чтобы к концу периода плавления основность шлака была более 1,6, а содержание закиси железа превышало 12%. При соблюдении этих условий в период плавления окислится более половины внесенного шихтой фосфора.

После полного расплавления шихты и тщательного перемеши­вания ванны отбирают пробу металла на полный химический анализ и на 3/4 скачивают шлак, вместе с которым удаляется значительная часть окислившегося фосфора. В случае получения в первой пробе пониженного содержания углерода шлак скачивают начисто и, поль­зуясь коксом или электродным боем, проводится науглероживание металла. Затем в печь присаживают известь с плавиковым шпатом в количестве 1,5—2,0% от массы металла и после их растворения приступают к окислительному периоду.

Окислительный период

В окислительный период необходимо реализовать следующие основные мероприятия:

  1. понизить содержание фосфора ниже допустимых пределов в готовой стали;
  2. возможно полнее удалить растворенные в металле газы (водород и азот);
  3. нагреть металл до температуры, на 120— 130° С превышающей температуру ликви­дуса;
  4. привести ванну в стандартное по окисленности состояние.

Одновременно окисляются другие примеси: углерод, кремний, мар­ганец, хром и др. Если плавка ведется, минуя восстановительный период, в окислительный период нужно также удалить серу из металла до содержания ниже допустимого предела.

Окисление фосфора осуществляют присадками железной руды с известью. Начинать присадку руды следует после предваритель­ного подогрева металла, чтобы сразу же после введения руды началось окисление углерода и кипение металла. Руду и известь надо давать равномерными порциями, поддерживая энергичное кипение металла. Шлак в этот период должен быть пенистым, жидкоподвиж­ным и самотеком сходить через порог рабочего окна.

Обеспечение самопроизвольного стекания и обновления шлака необходимо для эффективного удаления фосфора. По мере окисления углерода повышается температура плавления металла и уменьшается скорость окисления углерода. Скорость окисления к концу окисли­тельного периода уменьшается почти в два раза: примерно с 0,6% в начале периода до 0,3% С/ч в конце. Для поддержания энергич­ного кипения необходимо повышать температуру металла, что затруд­няет окисление фосфора, и поэтому снижения содержания фосфора в металле можно достигнуть лишь при постоянном обновлении шлака.

Присаживать очередную порцию руды и извести необходимо при уменьшении интенсивности кипения металла, образовавшегося из предыдущей порции руды. Введение крупных порций руды неже­лательно, так как это может вызвать охлаждение металла и кипение будет слабым. Избыток в ванне непрореагировавшей руды при последующем повышении температуры может вызвать очень бурное окисление углерода и привести к выбросу металла и шлака из печи. Во избежание этого руду надо присаживать так, чтобы скорость окисления углерода поддерживалась в пределах 0,4—0,6 % в начале пе­риода и 0,2—0,3 % С/ч в конце.

Для контроля за ходом окислительных процессов регулярно через каждые 5—10 мин отбирают пробы металла, в которых про­веряют содержание фосфора и углерода. При содержании фосфора менее 0,020%, если не оговорено его более низкие концентрации, окисление рудой можно прекратить. Правильно организованный температурный режим окислительного периода, постоянное обновле­ние шлака при поддержании его основности в пределах 2,7—3 и вы­соком содержании в нем закиси железа (15—20%) позволяют безособых затруднений понизить содержание фосфора до 0,010—0,012 % и менее.

Кроме режима фосфора, в окислительный период регламенти­руется режим углерода. Технологическими инструкциями пре­дусматривается, чтобы за период кипения было окислено не менее 0,3% углерода при выплавке высокоуглеродистой стали, содержа­щей 0,6% углерода и более, и не менее 0,5% при выплавке средне­углеродистой и низкоуглеродистой стали. В случае крупных печей эти количества могут быть несколько уменьшены. Окисление такого количества углерода необходимо для дегазации металла. Интенсив­ное кипение ванны, вызванное окислением углерода, является един­ственным эффективным средством снижения содержания азота в элек­тропечи, причем эффективность дегазации возрастает с увеличением скорости окисления углерода.

Поэтому после понижения до необходимых значений концентра­ции фосфора окисление углерода целесообразно интенсифицировать. Очень высокие скорости выгорания углерода позволяет получить продувка металла газообразным кислородом. Так, в печи емкостью 40т и при расходе кислорода 1200 м 3 /ч скорость окисления углерода составляет 3—4% С/ч при содержании его в пределах 0,9— 1,0% и 0,7—0,8% С/ч при содержании 0,20% С, причем надо иметь в виду, что скорость обезуглероживания возрастает с увеличением интен­сивности продувки.

Окисление углерода газообразным кислородом позволяет сокра­тить длительность периода, благодаря чему при расходе кислорода 4—7 м 3 /т на 5—10% увеличивается производительность печей и на 5— 12% снижается расход электроэнергии.

Для уменьшения угара железа продувку ванны кислородом следует начинать после нагрева металла и проводить ее при вклю­ченной печи. После начала окисления углерода вследствие большого теплового эффекта этой реакции температура металла быстро возрастает, поэтому в момент появления пламени печь необ­ходимо отключить.

В процессе продувки отбираются пробы металла, в которых конт­ролируется содержание углерода. К концу продувки содержание углерода должно быть немного ниже нижнего предела для заданной марки, в результате чего с учетом вносимого ферросплавами угле­рода и науглероживания от электродов обеспечивается получение заданного содержания его в металле. Однако, чтобы предотвратить переокисление металла, содержание углерода к концу окисления не должно быть ниже 0,1%, за исключением случая выплавки стали, в которой углерод является нежелательной примесью. Для стали таких марок ГОСТами устанавливается только верхний предел со­ держания углерода.

Режим марганца в окислительный период обычно не регламенти­руется. Реакция окисления марганца в окислительный период близка к равновесию, поэтому нормальный ход плавки с необходи­мым повышением температуры к концу периода сопровождается восстановлением марганца из шлака.

В окислительный период окисляется и хром, причем значитель­ное его количество окисляется еще в процессе плавления. Скачива­ние шлака в период плавления и постепенное его обновление в тече­ние окислительного периода способствуют дальнейшему окислению хрома и потере его со шлаком.

Тугоплавкие окислы хрома сильно понижают текучесть шлака и затрудняют процесс окисления фосфора. Поэтому использование хромистых отходов на плавках с полным окислением нецелесообразно.

И тем не менее иногда с целью использования содержащихся в шихте никеля и молибдена в завалку дают некоторое количество хромо­никелевых и хромоникельмолибденовых отходов в таком количестве, чтобы содержание хрома в первой пробе не превышало 0,4%.

Интенсификация окисления газообразным кислородом позволяет быстро поднять температуру металла до необходимого уровня. Однако при продувке кислородом металл легко и перегреть, что нежелательно, так как перегрев отрицательно влияет на состояние футеровки, ухудшает условия дефосфорации и может привести к увеличению в металле содержания азота. Поэтому при продувке нельзя допускать перегрева ванны, охлаждая ее при необходимости железной рудой.

Достижением нужного содержания фосфора, углерода и необ­ходимой температуры исчерпываются основные задачи окислитель­ного периода. После присадки последней порции руды или оконча­ния продувки кислородом, делают выдержку в течение не менее 10 мин, во время которой отбирают пробу на анализ и замеряют тем­пературу металла. Общая продолжительность окислительного пе­риода составляет 40—70 мин, а в случае применения газообразного кислорода она может быть сокращена до 30 мин.

Длительность окислительного периода определяется в основном скоростью окисления фосфора. На некоторых заводах для ускорения этого процесса вместе с кислородом вводят смесь порошков извести и плавикового шпата. Порошкообразные материалы в зоне реакции снижают перегрев металла и создают благоприятные условия для окисления фосфора, в результате чего длительность окислительного периода может быть дополнительно сокращена.

В окислительный период удаляется 40—60% серы, вносимой шихтой. Успешной десульфурации способствует высокая основность шлака (не менее 2,7—2,8) и его постоянное обновление. Благоприятные условия для удаления серы в окислительный период создаются при введении вместе кислородом порошкообразной извести.

Раскисление. Восстановительный период

По окончании окислительного периода сталь раскисляют. При этом возможны два варианта выполнения этой технологической операции:

  1. глубинное раскисление без наводки восстановитель ного шлака, т. е. без восстановительного периода;
  2. раскисление в восстановительный период.

Глубинное раскисление без скачивания окислительного и наводки восстановительного шлака начали применять в последние годы и толч­ком к развитию этого метода послужило значительное увеличение мощности печных трансформаторов, которая в восстановительный период используется в малой степени. Минуя восстановительный период выплавляют главным образом углеродистую и низколеги­рованную конструкционную сталь.

При выплавке стали под одним шлаком (без наводки восстанови­тельного шлака) после окончания окислительного периода в печь присаживают кусковой 45%-ный или 75%-ный ферросилиций (0,1%) и ферромарганец из расчета получения среднего заданного содержа­ния марганца в металле. Затем при выплавке хромсодержащей стали в печь присаживают феррохром из расчета получения среднего задан­ного содержания хрома в стали. Длительность раскисления в печи составляет 10—20 мин, после чего сталь выпускают в ковш, где ее окончательно раскисляют ферросилицием и алюминием.

Выплавка стали под одним шлаком позволяет сократить дли­тельность плавки и уменьшить расход электроэнергии и раскислителей, а также упростить ведение плавки. Однако при выплавке стали, к которой предъявляются повышенные требования по свой­ствам и в которой необходимо получить пониженное содержание окисных включений, особенно при низком содержании углерода (

Основными задачами восстановительного периода являются:

  1. раскисление металла,
  2. удаление серы,
  3. корректировка хими­ческого состава металла,
  4. регулирование температуры металла,
  5. подготовка к выпуску высокоосновного жидкоподвижного шлака.

В начале восстановительного периода содержание углерода должно быть на 0,03—0,10% меньше нижнего предела в готовой стали. При меньшем содержании углерода металл необходимо науглеродить. Для этого на поверхность металла после скачивания окислительного шлака присаживают кокс или электродный бой и металл перемеши­вают. При этом усваивается примерно 60—70% углерода кокса и 70—80% углерода, вносимого электродным боем.

Науглероживание является нежелательной операцией, так как оно увеличивает продолжительность плавки, а кроме того, нужно иметь в виду, что открытая поверхность металла быстро охлаждается и он поглощает из атмосферы водород и азот, уже не удаляемые в вос­становительный период. Поэтому окислительный период должен быть проведен так, чтобы необходимость науглероживания исклю­чалась.

Восстановительный период начинается наведением известкового шлака из смеси извести, плавикового шпата и шамота в соотношении 5:1:1 в количестве 2,0—3,5% от массы металла. Для быстрого проплавления шлаковой смеси первые 10— 15 мин после включения тока рекомендуется работать на средней ступени напряжения транс­форматора. Остальную часть рафинировки проводят на низшей ступени напряжения, за исключением случаев присадки большого количества ферросплавов. Подводимую мощность регулируют в соот­ветствии с температурой металла.

В течение длительного времени при выплавке легированных ста­лей применяли «классическую» технологию, основанную на диффу­зионном раскислении металла через шлак, когда раскисляющие вещества (кокс, ферросилиций, силикокальций, алюминий) в виде порошков присаживали к шлаку. Углерод, кремний, кальций и алю­миний в шлаке восстанавливают окислы железа, марганца и хрома, и в объеме печи образуется восстановительная атмосфера. Пониже­ние содержания закиси железа в шлаке вызывает переход кислорода из металла в шлак.

Диффузионное раскисление можно проводить под белым или карбидным шлаком. Для получения белого шлака в начале восста­новительного периода шлак обрабатывают порошком кокса, а затем смесью порошков кокса и 75%-ного ферросилиция, причем количество кокса в смеси постепенно уменьшается. После 25—40 мин выдержки шлак светлеет (в нем понижается содержание окислов железа, мар­ганца, хрома). При остывании такой шлак рассыпается в белый по­рошок. Расход кокса на раскисление под белым шлаком составляет 1—2 кг на 1т металла.

При увеличении расхода кокса до 2—3 кг/т количества углерода может хватить не только для восстановления окислов тяжелых металлов и компенсации окисляющего влияния атмосферы, но неко­торая его часть может пойти на восстановление окиси кальция по реакции CaO + 3С = СаС2 + СО.

Образованию карбида кальция способствуют высокие температуры и концентрация в шлаке углерода и окиси кальция, а также и восста­новительная атмосфера. В герметизированной печи образуется карбидный шлак, содержащий более 2% СаС2. Такой шлак при определенных содержании взвешенного углерода и концентрации карбида кальция при охлаждении рассыпается в виде серого или темно-серого порошка.

Выдержка под карбидным шлаком сопровождается значительным науглероживанием металла, поэтому можно раскислять под карбид­ным шлаком только высокоуглеродистые стали. Если выплавляют среднеуглеродистые стали, вместо карбидного шлака наводят слабо­карбидный, содержащий 1,0— 1,5% СаС2, что уменьшает скорость науглероживания металла.

Карбид кальция хорошо смачивает металл, поэтому при выпуске и разливке возможно запутывание карбидного шлака в металле с образованием грубых шлаковых включений. Во избежание этого перед выпуском плавки карбидный шлак необходимо перевести в бе­лый, для чего в нем надо окислить избыточный углерод и карбид кальция. За 20—30 мин до выпуска в печь присаживают шлаковую смесь с повышенным содержанием плавикового шпата и шамота и на некоторое время оставляют открытым рабочее окно. Усиленный приток воздуха окисляет углерод и карбид кальция, в результате чего шлак превращается в белый.

Диффузионный обмен между шлаком и металлом протекает с ма­лой скоростью, поэтому раскисление металла через шлак требует значительного времени, что является крупным недостатком этого способа раскисления.

Технология диффузионного раскисления предусматривает про­текание реакций между раскислителями и закисью железа либо в слое шлака, либо на границе раздела металл—шлак, при котором металл не будет загрязняться продуктами раскисления. Это преиму­щество диффузионного раскисления может быть реализовано при условии, что скорость перехода закиси железа из металла в шлак будет превосходить скорость встречной диффузии раскислителей.

В этом случае раскисление металла должно происходить без уве­личения содержания в нем раскислителей.

Одним из раскислителей является углерод. В начале восстановительного периода содержание кислорода определяется содержанием углерода, но превышает равновесные значения (рисунок 3). Если бы при выдержке под белым и карбидным шлаками раскисление угле­родом происходило в шлаке или на границе раздела металл—шлак, то после раскисления содержание кислорода в металле должно было бы быть меньше равновесного с углеродом. Однако многочисленные экспериментальные данные свидетельствуют о том, что в процессе выдержки под белыми и карбидными шлаками содержание кисло­рода в металле не становится меньше равновесного с углеродом, а лишь приближается к состоянию равновесия (см. рисунок 3). При этом выдержка под белым шлаком сопровождается науглероживанием металла на 0,02—0,04%, под слабокарбидным— на 0,03—0,06%, под карбидным — до 0,1%. Это говорит о том, что при диффузион­ном раскислении не только кислород переходит в шлак, но и углерод из шлака диффундирует в металл, где вступает во взаимодействие с кислородом.

Зависимость содержания кислорода в металле от содержания углерода до (а) и после (б) диффузионного раскисления

Рисунок 3 – Зависимость содержания кислорода в металле от содержания углерода до (а) и после (б) диффузионного раскисления

Диффузионное раскисление другими раскислителями также со­провождается увеличением их содержания в металле, причем со­держание кислорода не уменьшается ниже равновесных с сильными раскислителями. Таким образом, роль диффузионного раскисления сводится к понижению концентрации кислорода до равновесия с угле­родом, а понижение его содержания ниже равновесных даже при раскислении порошками ферросилиция и алюминия происходит в глубине металла, т. е. по существу в результате глубинного рас­кисления, и, следовательно, продукты раскисления также образу­ются в металле.

Роль диффузионного раскисления уменьшается с увеличением емкости печи, так как вместе с этим уменьшается удельная поверх­ность контакта металла со шлаком, что замедляет диффузионный обмен между ними, и поэтому уменьшается значение основного преимущества диффузионного раскисления. Из изложенного следует, что для интенсификации раскисления целесообразно, особенно в крупных печах, раскислители вводить непосредственно в жидкий металл. Этим способом можно за несколько минут удалить из ме­талла кислорода больше, чем за 1,5—2,0ч диффузионного раскис­ления.

Однако из этого не следует, что выдержка под восстановительным шлаком бесполезна. Восстановительный шлак препятствует поступ­лению кислорода из атмосферы в металл, способствует удалению включений — продуктов глубинного раскисления и, что очень важно, способствует десульфурации металла. Поскольку все эти задачи в восстановительный период целесообразно решать комплексно и параллельно, в настоящее время для выплавки металла ответствен­ного назначения наибольшее распространение получила технология, сочетающая преимущества диффузионного и глубинного раскисления.

По этой технологии после скачивания окислительного шлака на голое зеркало металла присаживают металлические раскислители в виде ферромарганца, ферросилиция, силикомарганца, силикохрома, алюминия, сплава АМС и других сплавов. Количество при­садок должно быть таким, чтобы обеспечить содержание марганца на нижнем пределе в стали заданной марки и ввести 0,15—0,20% кремния и примерно 0,5—0,10% алюминия. Затем присаживают шлаковую смесь и после образования жидкого шлака его обрабаты­вают раскислительной смесью. Уже первые порции раскислительной смеси наряду с порошком кокса содержат молотый ферросили­ций; в дальнейшем количество кокса в раскислительных смесях уменьшают.

В результате обработки такими смесями в печи образуется слабо­карбидный или белый шлак, содержащий менее 0,6% FeO и 50—60% СаО при основности 2,5—3,0 и характеризующийся высокой десульфурирующей способностью. Количество кислорода в металле благодаря глубинному раскислению резко уменьшается, что повышает скорость десульфурации. Увеличению скорости десульфурации спо­собствует повышение жидкотекучести шлака при сохранении высо­кой основности его, что достигается присадками плавикового шпата. Плавиковый шпат, кроме того, может оказывать прямое влияние на десульфурацию, образуя с серой CaS и летучее соединение SF6.

Таким образом, в восстановительный период электроплавки создаются исключительно благоприятные условия для удаления серы. Коэффициент распределения серы между шлаком и металлом соста­вляет 15—40, а при наиболее благоприятных условиях достигает 60.

Так как сера удаляется в результате ее диффузии к поверхности раздела металл—шлак, то увеличению скорости десульфурации способствуют перемешивание металла и увеличение поверхности контакта металла со шлаком. Практика эксплуатации печей, обо­рудованных механизмом электромагнитного перемешивания металла, показывает положительное влияние движения металла на скорость удаления серы. Но и при электромагнитном перемешивании распре­деление серы между металлом и шлаком не достигает равновесия, поэтому значительное количество серы (до 50%) переходит из ме­талла в шлак во время выпуска, когда вследствие эмульгирования в ковше поверхность контакта увеличивается во много раз.

Десульфурации металла во время выпуска плавки способствует глубокое раскисление металла и шлака, формирование к моменту выпуска жидкоподвижного высокоосновного шлака и слив металла вместе со шлаком мощной компактной струей. Учитывая это, шлак перед выпуском разжижают присадками плавикового шпата и рас­кисляют порошком алюминия, а за 3—5 мин до выпуска в металли­ческую ванну присаживают алюминий. После раскисления в стали должно оставаться 0,02—0,05% растворенного алюминия. Такое количество растворенного алюминия необходимо для нейтрализации кислорода, поступающего из атмо­сферы во время выпуска и разливки, и для регулирования величины зерна аустенита, так как присутствие в металле избыточного алю­миния делает сталь мелкозернистой. В зависимости от марки стали и необходимости получения зерна определенного размера для окончательного раскисления вводят от 0,4 до 1,2 кг алюминия на 1 т стали.

После раскисления алюминием 70—90% всех включений в стали бывает представлено глиноземом, обусловливающим при прокатке образование строчек включений, ухудшающих свойства стали, осо­бенно в поперечном направлении. Поэтому иногда для окончатель­ного раскисления применяют и другие раскислители: ферротитан, силикокальций и др. При раскислении силикокальцием природа включений — продуктов раскисления резко изменяется: преобла­дающими становятся глобулярные включения, благодаря чему улучшаются свойства стали в поперечном направлении.

Окончательное раскисление алюминием и силикокальцием можно проводить также и в ковше, присаживая их на дно ковша перед сливом или под струю металла.

Одной из главных задач восстановительного периода является доводка металла до заданного химического состава. Поэтому в начале этого периода, сразу после образования шлакового покрова, отби­рают пробу металла на определение содержания углерода, марганца, хрома и никеля. При диффузионно-осадочном раскислении марганец вводится из расчета получения нижнего предела заданного содержа­ния, имея в виду, что некоторое количество марганца может восста­новиться из небольшого количества шлака, сохранившегося после окислительного периода.

Феррохром вводят в печь в начале восстановительного периода. При выплавке высокохромистых марок стали феррохром перед при­садкой необходимо подогреть в нагревательной печи до красного цвета. Это увеличит производительность электропечи, уменьшит расход электроэнергии и будет способствовать повышению стойкости футеровки.

Для корректировки содержания хрома, после некоторой вы­держки, отбирают две следующие пробы металла, что позволяет про­верить правильность взвешивания шихты и уточнить количество необ­ходимых присадок. Корректировку по хрому следует проводить с уче­том содержания углерода, проверяемого в каждой пробе. В цехе, как правило, имеется феррохром разных марок — от безуглеродистого до содержащего 8% С. Использование более дешевого угле­родистого феррохрома выгоднее, поэтому при возможности корректи­ровку следует проводить углеродистым феррохромом. Одновременно с рассмотренной выше корректировкой подбором соответствующей марки феррохрома корректируют и содержание углерода. Корректи­ровку содержания хрома в конце рафинировки на стали низколеги­рованных марок разрешается проводить не более чем на 0,2%, на высокохромистых — не более чем на 0,8% и не позднее чем за 10 мин до выпуска. Усвоение хрома составляет 96—98%.

Никель обладает значительно меньшим сродством к кислороду, чем железо, и поэтому в ванне практически не окисляется. Основ­ную часть никеля, определяемую из расчета получения его на нижнем пределе заданного содержания, дают в завалку. Корректировку по содержанию никеля необходимо проводить как можно раньше, желательно в окислительный период. Вызвано это тем, что электро­литический никель содержит водород, а гранулированный — влагу.

Удалить вносимые никелем газы можно только в процессе кипения ванны, поэтому предварительную корректировку необходимо выпол­нять в окислительный период, а окончательную — не позже чем за 10 мин до выпуска и не более чем на 0,2%. При выплавке стали по ответственным заказам и предварительную и окончательную корректировку желательно проводить только более чистым электро­литическим никелем. Усвоение никеля при выплавке стали состав­ляет 98— 100%.

Практически в ванне печей не окисляется и молибден, поэтому на плавках с окислением ферромолибден дают сообразно нижнему пределу в период кипения. На плавках стали с высоким содержанием молибдена его можно давать в завалку. Взамен ферромолибдена иногда используется порошок молибдата кальция (СаМоО4), который также можно давать в завалку или присаживать в начале окисли­тельного периода. Из молибдата кальция молибден практически полностью восстанавливается углеродом и другими элементами.

Молибден — дорогой металл, поэтому выплавлять молибден­ содержащие стали следует так, чтобы содержание молибдена было ближе к нижнему пределу.

Легирование вольфрамом также следует проводить в начале восстановительного периода, а при высоком заданном содержании W в стали его лучше давать в завалку. Вследствие тугоплавкости ферровольфрама (температура плавления более 2000° С) его раство­рение продолжается довольно долго, поэтому окончательную кор­ректировку необходимо заканчивать не позднее чем за 30 мин до выпуска при введении более 0,20% ферровольфрама и не позднее чем за 20 мин при меньших количествах.

Тяжелые металлы — ферромолибден и ферровольфрам оседают на подину и для их лучшего усвоения металл необходимо часто и тщательно перемешивать. Усвоение вольфрама составляет около 90%.

Ванадий легко окисляется, поэтому феррованадий присаживают в восстановительный период в хорошо раскисленный металл не позд­нее чем за 15 мин до выпуска при введении 0,5% феррованадия и не позднее чем за 30 мин при более значительных присадках.

Очень легко окисляется титан. Ферротитан присаживают в хо­рошо нагретый и хорошо раскисленный металл за 10— 15 мин до выпуска. При выплавке нержавеющей стали с титаном перед при­садкой ферротитана шлак обновляют, раскисляют порошком алю­миния и принимают меры для устранения подсоса в печь атмосфер­ного воздуха. Легирование металлическим титаном или 60%-ным ферротитаном можно проводить в ковше. Усвоение титана составляет около 50%.

Длительность восстановительного периода определяется вре­менем, необходимым для образования раскислительного шлака, раскисления шлака и металла, десульфурации и легирования ме­талла; эта длительность составляет 70— 120 мин. Для увеличения производительности печей эти процессы целесообразно интенсифи­цировать в печи или осуществлять раскисление, обессеривание и легирование вне печи.

Отдельные звенья технологии, которая позволит в будущем отказаться от проведения в печи восстановительного периода и при выплавке стали, к которой предъявляются повышенные требования, уже разработаны и опробованы в производственных масштабах.

В частности, получить низкое содержание серы в металле (0,004—0,008%) можно при продувке металла в конце окислительного пери­ода газом с порошками-десульфураторами. Уменьшить в несколько раз содержание серы можно также во время выпуска плавки в ковш со специальным синтетическим шлаком. Раскисление и легирование металла может быть проведено в ковше во время слива плавки с по­следующей продувкой металла нейтральным газом или в специаль­ных установках, например в установках порционного вакуумиро­вания. На установках внепечного вакуумирования может быть осу­ществлено науглероживание металла порошкообразными карбю­ризаторами и обезуглероживание с помощью окисляющих добавок и без них, раскисление и легирование, рафинирование от газов и неметаллических включений.

Объединение этих звеньев новой технологии в единую техноло­гическую схему позволит превратить дуговую электропечь в агрегат по расплавлению твердой шихты и получению полупродукта, обес­печить максимальную производительность электропечей, высокие экономические показатели и создать оптимальные условия для поточ­ного производства продукции высокого качества.

Выпуск плавки

При классической технологии во время выпуска ещё раз используют раскисляющую и десульфурирующую способность белого печного шлака. Для этого в сталеразливочный ковш по возможности полно сливают шлак, а затем на него выпускают металл. Наклоном печи регулируют время выпуска металла из печи от 5 до 10 минут, при необходимости в ковш дают материалы, содержащие элементы с сильным сродством к кислороду (Al, Ti, Ca и т.д.). После окончания выпуска металла наклоном печи в противоположную сторону через рабочее окно сливают остатки шлака.

Как видно из изложенного выше, классическая технология весьма сложна и требует много времени на реализацию. Общая продолжительность плавки здесь составляет 3-5 часов. В основном это связано с проведением восстановительного периода. В настоящее время задачи глубокой десульфурации, а также раскисления и легирования металла успешно решаются при ковшевой обработке стали. Поэтому современная технология выплавки стали имеет несколько вариантов, существенно отличающихся от классического.

Наиболее распространённая из них – технология без восстановительного периода. Для её реализации лучше всего подходят печи, во-первых, с трансформатором удельной мощностью 0,7-0,8 МВт/т и дополнительными топливно-кислородными горелками, что позволяет максимально форсировать нагрев и плавление лома, во-вторых, с кислородными фурмами, способными вдувать в ванну 0,3—0,8 м 3 /(т-мин) кислорода, а также порошковые материалы, что даёт возможность сократить до минимума окислительный период; в-третьих, с донным выпуском металла, что обеспечивает отсечку окислительного печного шлака.

При такой технологии успешно решаются вопросы обезуглероживания, дефосфорации, а также нагрева металла. Остальное – раскисление и легирование, а также глубокая десульфурация стали – осуществляется в ковше. Наилучшим способом это реализуется в агрегате печь-ковш.

В современных ДСП общая продолжительность плавки достигла 1,0-1,5 ч, а удельный расход электроэнергии – 360-400 кВт-ч/т. Ещё дальше пошли инженеры немецкой фирмы “ФУКС-Системтехник”. Их способ позволяет сделать продолжительность плавки менее одного часа, а удельный расход электроэнергии сократить до 310-330 кВт ч/т.

Своими особенностями отличаются плавки в ДСП при применении в шихте металлизованного сырья или жидкого чугуна.

Однородный гранулометрический и химический состав металлизованного сырья (как правило, это восстановленные окатыши) позволяет организовать дозированную и непрерывную его подачу во время периода плавления. При этом горение дуг более устойчивое, увеличивается полезное использование мощности трансформатора печи, а акустический шум уменьшается. Плавление металлизованного сырья сопровождается образованием жидкоподвижного, пенистого первичного шлака, который непрерывно, самотёком уходит из печи. Это обеспечивает быструю и глубокую дефосфорацию. В отличие от лома металлизованное сырьё отличается низким содержанием серы (до 0,025%) и, особенно, цветных металлов, например, меди (менее 0,005%).

Практика работы дуговых печей (ОЭМК) выявила, что наилучшие технико-экономические показатели достигаются при доле металлизованных окатышей в металлошихте в 40-50%. Дальнейшее увеличение этой доли вызывает некоторое уменьшение производительности.

В металлизованном сырье содержится 2-5% пустой породы, для её офлюсования, а также нормального шлакообразования в печь через свод подают известь, расход которой удваивается против обычного. После полного расплавления проводят короткий (10-15 мин) окислительный период, фактически доводку. Затем металл выпускают в ковш и подвергают внепечной обработке.

Следует отметить, что из-за дополнительного расхода тепла на расплавление пустой породы и флюсов расход электроэнергии увеличивается на 10-15%. Для компенсации этого разрабатываются способы предварительного подогрева металлизованного сырья перед завалкой в печь, подобно подогреву лома в ДСП системы “ФУКС-Системтехник”.

Появление ДСП, приспособленных для интенсивной продувки ванны кислородом, позволило использовать в их шихте жидкий чугун. Заливка чугуна осуществляется примерно в середине периода плавления через специальную заливочную воронку в своде печи. Сразу же после этого начинается продувка ванны кислородом. Представляется интересной, наряду с верхней, подача кислорода с помощью горизонтальных стационарных фурм под уровень ванны. Естественно, что продувка сопровождается нагревом ванны за счёт окисления примесей чугуна и интенсивным образованием пенистого шлака, который самотёком частично уходит из печи. Таким образом обеспечиваются успешные обезуглероживание и дефосфорация металла.

Раскисление и легирование металла также осуществляются в ковше на выпуске и при внепечной обработке.

Полученные результаты свидетельствуют, что продолжительность плавки с применением жидкого чугуна может быть менее одного часа, а удельный расход электрической энергии за счёт физического и химического тепла чугуна может быть снижен до 200 – 240 кВт-ч/т и менее.

Источник https://chezmk.ru/stati/vidy-termicheskoy-obrabotki-stali/

Источник https://wikimetall.ru/spravochnik/samyj-legkoplavkij-metall.html

Источник https://metallolome.ru/tehnologiya-vyplavki-stali-v-osnovnyh/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *